NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

ORIGINALLY ISSUED

October 1941 as Report

THE EFFECTS OF HUB DRAG, SOLIDITY, DUAL
ROTATION, AND NUMBER OF BLADES UPON THE
EFFICIENCY OF HIGH-PITCH PROPELLERS

By Elliott G. Reid Stanford University

CASE FILE COPY

WASHINGTON

NACA WARTIME REPORTS are reprints of papers originally issued to provide rapid distribution of advance research results to an authorized group requiring them for the war effort. They were previously held under a security status but are now unclassified. Some of these reports were not technically edited. All have been reproduced without change in order to expedite general distribution.

THE EFFECTS OF HUB DRAG, SOLIDITY, DUAL ROTATION, AND NUMBER OF BLADES UPON THE

EFFICIENCY OF HIGH-PITCH PROPELLERS

By Elliott G. Reid

SUMMARY

This report describes an investigation of the effects of hub drag, solidity, dual rotation, and number of blades upon the efficiency of high-pitch propellers.

Preliminary tests made with six-blade propellers demonstrated that slightly greater efficiencies were obtained with a spinner of 0.12D than with one of 0.28D.

Two-, three-, four-, and six-blade single-rotating propellers, and four- and six-blade dual-rotating propellers, equipped with spinners of the smaller size, were then tested at blade angles of 35° to 65° at 0.75R. Comparison of the results with those of previous tests made with bare hubs reveal substantial increases of thrust, very small effects upon power, and marked improvements in efficiency. These improvements increase with V/nD and are greater for single- than for dual-rotation models,

The effects of solicity, dual rotation, and number of blades upon the performance characteristics of constant-speed propellers with spinners are analyzed by a new method. With such propellers, it is found that marked improvements in take off and climbing performance can be obtained by increasing solicity and introducing dual rotation, and that reduction of the number of blades - accompanied by compensating increase of width - has a beneficial, rather than adverse, effect at low speed and a negligible one at high speed.

The general conclusion is drawn that blade loading is a more reliable index of propeller performance than is disk loading.

INTRODUCTION

Two previous Stanford investigations of tandem (dual rotation) propellers are described in references 1 and 2; the hubs of the models used in these experiments were fully exposed. Other tests of some of the same models (reference 3) have demonstrated that substantial beneficial effects are obtained by enclosing the hubs within small spinners. Full-scale tests (reference 4) substantiate these results and indicate that the influence of hub drag increases with the pitch of the propeller.

Since the apparent superiority of the tandem arrangement over the conventional one also increased with pitch when the hubs were unshielded, it was considered desirable to undertake a broad investigation of the effects of hub drag upon the efficiency of high-pitch propellers of both single- and dual-rotating types. And, as such an investigation would necessarily involve most of the experimental work required for analysis of the effects of solidity, dual rotation, and number of blades upon propulsive efficiency, a slight enlargement of the program enabled the inclusion of these objectives.

Presented in this report are the results of these experiments which were carried out for the NACA in the Guggenheim Aeronautic Laboratory of Stanford University.

APPARATUS AND METHODS

Wind tunnel and dynamometer. - The 7-1/2 foot Eiffel-type tunnel and the dynamometer used for these tests have been described in reference 1. The dynamometer enables determination of the total thrust and the torque of each member of a tandem combination; its shrouding was slightly modified during the present tests to blend smoothly into the lines of the spinners, which were attached to the model propellers.

Model propellers. - The blades of the models used in these experiments were of NACA type E and have been used in several previous investigations. (See references 1, 2, 3, and 5.) Their general appearance is illustrated by figures 1 to 5; blade-form curves are given in figure 6 and a complete drawing may be found in reference 5. The fact that the shanks of these blades have streamline profiles should be noticed particularly because this feature has such an important bearing upon the question of optimum spinner diameter.

All of the models were 36 inches in diameter. Attention is called to the uniformity of size because previously tested six-blade models have been 37 inches in diameter; this irregularity was eliminated by reconstruction of the six-way hub. In all but two special models (used to investigate the effect of number of blades with fixed solidity) the blade width was that defined by the b/D curve designated E in figure 6; at corresponding radii, the chords of the wider blades, E' and E" were, respectively, 4/3 and 3/2 those of the E blades. All blade-angle values refer to the section at 0.75R.

Spinners. - Spinners of two sizes were tested; their forms are illustrated by figures 1 to 5. The forward sections were halves of ellipsoids of revolution and the rear sections were circular cylinders. The half-ellipsoids had axial lengths equal to their maximum diameters which were 4.25 inches (0.113D) and 10.00 inches (0.278D). The planes of rotation of single propellers and those of the forward members of tandem combinations were located 3.625 inches (0.101D) aft of the bases of the ellipsoidal noses. The concentric dynamometer shrouds slightly overlapped the spinners, cleared them radially by 0.05 inch and terminated 2.2 inches aft of the plane of rotation of the single propellers and 1.4 inches aft of the plane of the rear propeller when two were mounted in tandem.

The small spinners had the minimum diameter which would permit enclosure of the hubs; they were pierced with holes just large enough to admit the circular blade shanks and the butts of the blades touched the spinners when set at large angles. (See fig. 4.) The large spinners enclosed considerable portions of the blades and the diameter of the circular apertures was therefore slightly greater than the blade chord. All of the spinners had internal diaphragms which prevented centrifugal pumping action, that is, drawing air from the base of the spinner and discharging it through the blade apertures. To provide strictly comparable blade-root conditions, the apertures in the large spinners were closed with cellophane tape and when small spinners were used the irregularities at the roots of the blades were filled with plasticine. The terms "plain" and "filleted" blade roots are used to distinguish the conditions illustrated by figures 4 and 5, respectively.

Tests. - To determine the effects of spinner diameter, preliminary tests were made with six-blade model propellers which were fitted successively with the large and small spinners. In the case of the small one, tests were made at blade angles of 35°, 45°, 55°, and 65° with plain blade roots and at 45° and 65° with filleted roots. The blade apertures in the large spinner were closed during tests made with blade angles of 35°, 45°, 55°, and 65° but the effects of opening them were determined for settings of 45° and 65°.

The results of the foregoing tests demonstrated that with comparable conditions at the blade roots, that is, filleted roots with the small spinner and closed blade apertures with the large one, the small spinner was slightly superior at all blade angles. Spinners of 0.116D were therefore used to complete the following program of tests:

Arrangement	Blade type	No, of Blades	β at 0.75R (deg)
Single retation	E	6	35, ¹ 45, 55, ¹ 65
Single rotation	E	³ 4	35, ¹ 45, 55, ¹ 65
Dual rotation ²	E	6	35 , ¹ 45, 55, ¹ 65
Dual rotation ²	E	4	35, ¹45, 55, ¹ 65
Single rotation	E	⁴ 3	35, 45, 55, 65
Single rotation	E'	33	35, 45, 55, 65
Single retation	E"	⁴ 2	35, 45, 55, 65

¹Indicates that an additional test was made with filleted blade roots.

²Blade angles are those of forward (r.h.) propeller; blade angles of rear (l.h.) propeller were identical with those specified in reference 2, i. e.

 $[\]beta$ (r.h.) 35 45 55 65 deg β (l.h.) 34.3 43.8 53.1 62.5 deg

³ and ⁴ identify propellers of equal solidities.

Tests were made in accordance with the usual Stanford laboratory practice of driving model propellers at constant rotative speeds and varying V/nD by altering the wind speed. The rotative speeds utilized for tests made with blade angles of 35°, 45°, 55°, and 65° were approximately 1500, 1100, 865, and 625 rpm, respectively. These values are substantially equal to those used for the same blade settings in the tests covered by references 1, 2, and 3. Two complete tests were made with each model at each blade setting; the velocities used in the second were intentionally staggered with respect to those of the first, and blade angles were checked between tests. This somewhat unconventional technique yielded very gratifying results; it led to the discovery of one error in blade setting, to unusually precise definition of discontinuities (e.g. the break in the Cp curve for the E" blades at 350), and to the discovery of some hysteresis effects upon the characteristics of dual-rotating propellers when set at 65°.

The only entirely new element of testing procedure adopted for these experiments was the observation and regulation of the pressures on the backs of the spinners. This was relatively unimportant in the case of the small spinner but seriously erroneous thrust readings would have been recorded if no attention had been paid to the pressures built up within the shroud behind the large spinner.

To eliminate such extraneous forces, the combination of bleeder orifices with an adjustable flap ring was first used and this was later supplanted by a variable scoop for adjustment of the pressure inside the shroud. As the variation with V/nD of the pressures at the several necessary openings in the shroud made it impossible, even with a single model, to maintain equality of the internal and static pressures, the pressure control device was so adjusted as to equalize them at the V/nD for maximum efficiency and a shroud pressure run was made before each model propeller test. The thrusts observed during the latter were subsequently corrected for deviations of the shroud pressure from the static pressure of the undisturbed stream.

Under these conditions, the spinner thrust corrections were less than I percent of the measured thrust except at values of V/nD well above or below that for maximum efficiency and they exceeded 3 percent only with the large spinner. Moreover, the accuracy with which the shroud pressures were determined enabled calculation of the corrections with an accuracy much greater than that of force observation. Therefore the corrected thrusts may be confidently accepted as those which correspond to the existence of static pressure over the backs of the spinners.

RESULTS

The observed data have been reduced to the usual coefficient forms

$$C_{T} = \frac{T}{\rho n^{2}D^{4}} \qquad C_{P} = \frac{P}{\rho n^{3}D^{5}} \quad \eta = \frac{C_{T}}{CP} \times \frac{V}{nD} \qquad C_{S} = \frac{V}{nD} \qquad \int_{0}^{5} \frac{1}{CP} dt$$

Use has also been made of what will be called the "thrust power coefficient"; it is defined as $C_{PT} = \eta \ C_P$. The symbol ΔC_P is used to represent the difference between the power coefficient for the ferward (r.h.) and rear (l.h.) members of tandem combinations, that is,

$$\Delta C_{P} = C_{P} (w.h.) - C_{P} (l.h.)$$

and is therefore positive when the forward propeller absorbs more than one-half of the total power input.

The reduced numerical data for all of the tests are presented in tables 1 to 42; an index of tables precedes the first one,

Values from a representative table have been plotted in figure 7 to illustrate the degree of agreement between the results of check tests.

The effects of varying the spinner diameter in the case of the six-blade model are summarized by the curves of figure 8.

The characteristics of seven types of high-pitch propellers - with spinners of 0.118D - are presented in the logarithmic charts (figures 9 to 15). Comparable curves for the same propellers without spinners also appear in these figures. Envelope efficiency curves for all but the wide-blade models are shown in figure 16 and, in figure 17, the envelopes which correspond to small spinners and plain blade roots are superimposed.

Various charts derived from figures 9 to 15 will be referred to in the following discussion. An index of charts follows figure 5.

DISCUSSION

Comparison of large and small spinners. - Inspection of the curves in figure 8 reveals a rather surprising fact. It is that small irregularities of form at the junctions of propeller blades with a spinner may have greater influence upon the efficiency of that propeller than does doubling the spinner diameter. It therefore appears that a fair appraisal of the relative merits of different spinners can be made only when comparable conditions exist at the blade roots. Moreover, since the detrimental effects of such irregularities increase with blade angle, this discovery has an important bearing on the design of spinners and blade shanks (or cuffs) intended for high-speed aircraft.

The superimposed envelope efficiency curves at the bottom of figure 8 show that when blade-spinner interference effects are minimized, the influence of spinner diameter upon efficiency is relatively slight. The small order of the difference between the efficiencies attained with the large and small spinners will probably be surprising to the advocates of both varieties, but the allowable latitude of design indicated by this result cannot fail to be welcomed.

Although the spinner of minimum diameter was found to be superior in the present instance, which involved blades with streamline shanks, there is good reason to believe that this might not have been the case if the experiments had been made with round-shank blades. The broad question of optimum spinner diameter thus remains unsettled, but these results clearly indicated the desirability of using the smaller spinner throughout the remainder of this investigation.

Effects of spinners. - The effects of adding spinners to model propellers of seven types are illustrated by figures 9 to 15. Before examining these results in detail, it may be worth while to consider the potential sources of spinner effects upon propeller characteristics.

First, and most important, the hub of a propeller, when unshielded, experiences a considerable drag. This neutralizes a part of the thrust actually produced by the blades and thus reduces the effective thrust. Suppression of this drag is the primary object of enclosing the hub with a spinner. The resultant benefits may be augmented, of course, by making the spinner diameter somewhat larger than that of the hub when the blade shanks are of crude form. However, it should be remembered that as spinner diameter increases, the

effects of increased disk loading and axial velocity tend to nullify the benefits of suppressing shank drag. It is interesting to note that, if the drag coefficient of the hub be considered constant for all operating conditions, the effect of reducing this coefficient would be to increase the thrust coefficient by an amount proportional to $(V/nD)^2$. Now, since the thrust coefficients at which high-pitch ($\beta=35^\circ$ to 65°) propollers attain their maximum efficiencies do not increase as rapidly as the corresponding values of $(V/nD)^2$, the suppression of hub drag may be expected to produce improvements in efficiency which will increase with the pitch.

Another obvious source of influence is the reduction of resistance to rotation effected by enclosing the hub within a body of revolution. An approximate analysis of this effect leads to the anticipation of a small and uniform reduction of the power coefficient over the whole operating range.

The third source of spinner effects is equally apparent but the consequences cannot be so readily estimated; it is the alteration of the distribution of velocity over the propeller disk. However, this appears likely to be of minor importance unless relatively large spinners are used.

The experimentally determined effects will now be viewed against this background. Examination of figures 9 to 15 reveals that the results of the addition of spinners are, in general, to augment the thrust coefficient by a substantial amount, to alter the power coefficient almost negligibly and, therefore, to maintain or improve the efficiency under all operating conditions. The improvements of thrust and efficiency increase with V/nD - and, therefore, with blade angle - and the changes of power coefficient are seen to be of spechdary importance.

Two very significant facts are revealed by the envelope efficiency curves of figure 16. The first is that the efficiency of a dual-rotating propeller is improved less by the addition of a spinner than is that of the single propeller of equal solidity which has the same total number of blades. The second is that the magnitude of the gain in efficiency due to the use of a spinner is very slightly altered as the number of blades is increased from three to six.

For case of comparison, efficiency envelopes for the five models which incorporate E type blades are presented in figure 17. The most noteworthy characteristic of these curves is their flatness. They strongly resemble the curves predicted by application of the simple blade-element theory of a "representative element." It is interesting to observe that hub drag has obscured this characteristic in provious work done without spinners. It now appears that the use of very high pitch propellers is not necessarily accompanied by a serious loss of efficiency; in fact, it is apparent that high-solidity, dual-rotating propellers may develop efficiencies in excess of 85 percent with blade angles as great as 65°.

It is also shown by figure 16 that the apparent superiority of the dual-rotation arrangement over the conventional one is considerably less when spinners are used than was indicated by the results of earlier tests made with bare hubs. However, it cannot be too strongly emphasized that mere comparison of the envelope efficiency curves is an entirely inadequate basis for appraisal of the merits of different propellers and that this is particularly true under the condition of constant-speed operation. A more comprehensive method of analysis is outlined in the following section and further reference will be made to the question of single versus tandem propellers.

Comparison of constant-speed propellers. - Although a contrary view is somewhat widely held, the advent of constant-speed propellers has greatly simplified the problem of selecting the optimum design for a given set of operating conditions.

In the case of the fixed- or controllable-pitch propeller, neither the Eiffel logarithmic chart nor the more frequently used "design chart" (η and V/nD vs. Cg) yields the desired results which, in the final analysis, are simply curves of available thrust horsepower versus velocity (thpa vs. V) for each of the designs under consideration. For any thorough comparison, these curves should extend over the entire range of operating speed. Unfortunately, the afore-mentioned charts enable direct comparisons to be made under only one operating condition, that is, top speed or climb. As is clearly explained in chapter X of reference 6, the only completely satisfactory procedure is to compute, plot, and compare curves of

thpa versus V for several alternative designs. The necessity for this laborious procedure arises largely from the wide divergence in the character of the variations of power (or torque) with rotative speed among modern aircraft engines. On the other hand, the use of a censtant-speed propeller enables the operation of any aircraft engine

at constant values of power and rpm at all flight speeds. The previous complication is thus completely excluded and a new and much simpler method of comparison is made possible.

A relatively new type of chart is particularly useful for this purpose. Originally developed for use in a graphical method of performance prediction (reference 7), it enables direct comparison, under the conditions of constant speed operation, of curves of thpa, η or η Cp versus V or V/nD for any range of flight speed. The multiple identity of the curves and the simplicity of their preparation are explained below.

To understand the development of the chart, one has but to recognize the fact that when a constant-speed propeller is operated at fixed values of power input, rotative speed, and air density, the variation of blade angle with air speed is exactly that required to maintain the power coefficient ($Cp = 550 \text{ bhp/pn}^3D^5$) at a constant value. Urder these conditions

thp =
$$\eta$$
 bhp = η Cp ($\rho n^3 D^5 / 550$) = η Cp (constant)

This means, simply, that the ordinates of the curve of thpa versus V which corresponds to a particular value of Cp are directly proportional to the values of η which are realized when the blade angle is automatically adjusted so that the same amount of power is absorbed at all air speeds without variation of the rpm.

Such curves of η versus V/nD can be easily constructed when contours of η are superimposed upon a logarithmic chart of CP versus V/nD for a given type of propeller with its blades set at various angles. An example is shown in figure 18 where the construction of the curve of η versus V/nD for Cp = 0.4 is illustrated. It will be noted that proper location of scales enables the same curve to define both η and CpT (CpT = η Cp).

The use of logarithmic scales also permits interpretation of the curves of $C_{\rm PT}$ versus $V/{\rm nD}$ as curves of thpa versus V; this is the distinctive characteristic of the original Eiffel logarithmic propeller chart. Thus the construction of a family of such curves for each type of propeller effectively enables direct comparison of the curves of thpa versus V for all types under all conditions of constant-speed operation.

¹Scales for P and V may be correlated with those for C_P and V/nD, respectively, by use of equations (1) and (2) of reference 7.

Characteristics of constant-speed propellers. - Curves of the kind just described have been prepared for all of the propellers tested during the present investigation; they appear in figures 19 to 25. These families have certain common characteristics which merit special attention. Most important, perhaps, is the definition of an envelope by each family and the convergence of the curves for small values of Cp as V/nD decreases. This convergence and the existence of an envelope reveal the fact that, quite aside from compressibility losses, the thrust produced by a constant-speed propeller at relatively low forward speeds and constant rum does not increase continuously with power input. On the contrary, with continous increase of power at fixed forward and rotative speeds, the thrust (which is proportional to CpT) first increases, then levels off, and finally declines very rapidly. Thus, optimum thrust may be attained at part throttle under certain low speed conditions.

The secondary noteworthy feature is the uniformity of slope of the left-hand portions of the majority of the CpT curves (approximately 450). The significance of this feature is revealed by repletting one of the families of curves to Cartesian coordinates; figure 26 is such a replot of figure 20. The 450 lines of the logarithmic chart are transformed into straight lines which radiate from the origin. This rectilinear characteristic indicates that the thrust of a constant-speed propeller is practically constant throughout the take-off run.

A third feature of importance is also apparent in figure 26; it is the very flat top which characterizes the C_{PT} (or η) versus V/nD curves for constant-speed propellers. The rate at which the efficiency declines beyond the peak is so unlike that for the fixed-pitch propeller as to completely revise previous ideas of the sacrifice of top speed enforced by the use of a propeller which attains peak efficiency at an air speed well below the maximum. This characteristic difference may be clearly visualized by comparing the η (or C_{PT}) versus V/nD curve for $C_P=0.4$ in figure 18 with the efficiency curve for $\beta=45^\circ$ in figure 10; both refer to the fourblade single-rotating propeller and peak at approximately equal values of V/nD.

Envelope curves of CpT versus V/nD for propellers of five types are shown in figure 27. Their practical significance will become apparent with further discussion.

Effects of solidity and dual rotation. - The effects of solidity and of dual rotation upon the performance characteristics of constant-speed propellers are illustrated by figures 30 to 32. In comparing these curves of CpT (or η) versus V/nD, it should be kept in mind that each group is equivalent to a set of curves of thpa versus V for propellers of five different types, all of the same diameter and all operating under identical conditions of air density, rotative speed, and brake-horse-power input. Although the values of Cp which have been chosen for comparison (0.3 to 0.6) may seem unfamiliarly large, it is emphasized that even this range does not actually include the upper limit of current design practice. Figures 28 and 29 will help to clarify this point.

Figure 28 shows C_P to be a function of hp/D^2 , V_T (the tangential tip speed) and air density, or altitude. The relationship between these quantities is implicitly expressed by the definitive equation

$$C_P = 550 \text{ bhp/pn}^3 D^5$$

The explicit form is obtained when the product nD is replaced by V_T/π and $\sigma\rho_O$ is substituted for ρ , that is,

$$C_{P} = \begin{array}{ccc} \underline{bhp} & \underline{1} & \underline{1} & \underline{550 \ \pi^{3}} \\ V_{T}^{3} & \sigma & \underline{\rho_{O}} \end{array}$$

The oblique lines of the chart define the sea-level values of C_P ; values for other altitudes are obtained by adding to the ordinates of the sea-level lines the increments shown on the altitude scale. The values of allowable tangential tip speed can be read directly from figure 29 for any combination of air speed and allowable resultant tip speed (V_R) .

Values of hp/D² currently range from 1.0, for 50-horsepower units, up to 10 or 11 for engines of the 2000-horsepower class. In the case of a modern fighter, if V_R is limited to 900 feet per second, V_T cannot exceed about 690 feet per second when V=400 miles per hour. With $V_T=690$ feet per second and hp/D² = 10 at 25,000 feet (attainable with turbosupercharging), C_P is found to be just about 0.5. This must not be thought an extreme case for, in designs now under construction, C_P is expected to exceed 0.6 at altitude and to approach 0.25 in take-off at sea level. Thus the curves of figures 30 to 32 correspond closely to the conditions of modern military (and probably future civil) design.

Preliminary examination of these curves reveals that the maximum values of $C_{\rm PT}$ and η (or thpa) differ relatively little. The most striking effect of increasing the solidity of a constant-speed propeller is seen to be the flattening of the peak and leftward displacement of the curve of η versus V/nD. It will also be noticed that, whereas the value of V/nD for $\eta_{\rm max}$ decreases as the solidity is increased, the curves for single- and dual-rotating propellers of equal solidity peak at approximately equal values of V/nD. And finally, it appears that the introduction of dual rotation without change of solidity has a minor effect upon $\eta_{\rm max}$ but a major one upon the value of η throughout the range of V/nD below the peak.

Before discussing these phenomena in detail, it would appear that two questions should be clarified. The first is: Are the effects described above substantiated by full-scale test data or are they, perhaps, simply exaggerated manifestations of scale effect at low Reynolds numbers? The second is: If these phenomena cannot be ascribed to scale effect how can such great variations of efficiency at fixed values of Cp and V/nD be correlated with the momentum theory of propulsion which, after all, has furnished fairly reliable indications of the effects of design variations up to the present, but which fails to give any clue to the cause of the solidity effects illustrated by figures 30 to 32?

The answer to the first question is found in reference 8; comparable curves prepared from data contained in that paper are presented in figure 33. While these full-scale results do not agree quantitatively with those of the model tests, the qualitative relationships are so strikingly similar as to preclude any reasonable doubt of the reality of the phenomena. Moreover, it seems probable that much of the quantitative discrepancy may be logically ascribed to differences between the forms of the shanks of the model and full-scale blades; the former were streamlined whereas the latter had circular profiles.

While the benefits derived from dual rotation may be attributed to the reduction of rotational energy losses, the second question must still be answered with respect to the effects of solidity. In each of the figures 30 to 33 it is apparent that there is wide divergence between the efficiencies developed by propellers of various solidities when operating at fixed values of $C_{\rm P}$ and $V/{\rm nD}$. This is quite contradictory to the momentum theory which predicts that when $C_{\rm P}$ is constant, η will depend only upon $V/{\rm nD}$. The

theoretical relationship is illustrated by the curves designated "ideal efficiency," or η_1 , in figures 30 to 33; it is derived from the usual definition of "momentum theory efficiency"

$$\frac{\eta^2}{1-\eta} = \frac{2\rho AV^2}{T}$$

by the substitution of $\eta P/V$ for T, $\pi D^{2/4}$ for A, and Cp for $\frac{P}{\text{on}^{3}D^{5}}$ and can be reduced to the following form

$$\frac{V}{nD} = \eta \left[\frac{2C_{\frac{1}{2}}}{\pi(1-\eta)} \right]^{1/3}$$

It is now apparent that "disk power loading" is a very unreliable index of propeller efficiency.

The dependence of efficiency upon blade, rather than disk, loading is predicted, however, by both simple blade element and vortex theories. To test this prediction, the curves of figure 34 have been prepared; they illustrate the variations of η with V/nD for the several types of propeller under conditions of equal blade loading, that is, $C_P/B=0.1$ (B = number of blades). It is immediately apparent that the discrepancies between the curves for single-rotating propellers have been greatly diminished. Even better correlation is obtained when curves of η/η_1 are plotted in figure 35. Efficiency is thus shown to be unmistakably controlled by blade loading even though the limiting, or ideal, value is fixed by disk loading.

In the light of the foregoing conclusion, the effects of solidity upon the performance characteristics of constant-speed propellers are readily explainable. When the values of Cp and V/nD are fixed, the effect of adding more blades is simply to enforce a reduction of the blade loading. Since this can be done only by reducing the angles of attack of the elements and, therefore, the blade angles, an increase of solidity is necessarily accompanied by a reduction of pitch. The relatively low-pitch propeller of great solidity therefore attains its maximum efficiency at a smaller value of V/nD than does the higher-pitch type of lesser solidity - just as is the case with fixed-pitch propellers. The improvement of efficiency with increasing solidity at small values of V/nD is similarly explainable: Since the angles of attack under this condition are far greater than that for maximum $\,$ L/D, $\,$ the propeller whose elements have the smallest angles of attack will develop the greatest values of T/F (F = elementary tangential force) and, since V/nDis fixed, will attain the highest value of η .

Figures 30 to 32 show very clearly that, within the range of these tests, the effect of solidity upon the maximum efficiency of a constant-speed propeller is relatively small. However, it is worth noting that when Cp = 0.3, the three-blade propeller enjoys an advantage of about 3 percent when compared with the six-blade type, but that when Cp = 0.6, the order of merit is reversed and the values of maximum efficiency differ by 2 percent. The cause of this inversion is readily traced back to the envelopes of efficiency versus V/nD (fig. 17). Since the effect of increasing solidity is to reduce the value of V/nD for η_{max} , the three-blade propeller develops maximum efficiencies at values of V/nD which, when $C_P = 0.3$ to 0.6, correspond to the declining (right-hand) portion of the envelope. As the number of blades is increased to four and then to six, the corresponding range of V/nD for η_{max} moves progressively toward the left, that is, toward the region in which the envelope curves are substantially horizontal. Thus the maximum efficiency of the three-blade constant-speed propeller decreases steadily as Cp increases from 0.3 to 0.6, that of the four-blade type diminishes less rapidly and in the case of six blades the variation is practically negligible.

In previous comparisons of single- and dual-rotating propellers, attention has been focused upon the envelope efficiency curves because, when no spinners were used, these curves diverged so remarkably as the pitch became large. The beneficial effect of dual rotation upon the thrust at fixed values of Cp and V/nD has been evident in the results of two previous Stanford investigations (reference 1 and 2) but this has not been specifically distinguished from the general improvement of efficiency which was characterized by the marked elevation of the envelope. The first tests of the tandem arrangement made with spinners (reference 8) involved full-scale blades with round shanks and the results indicated that the advantages of dual rotation were very slight as regards peak efficiency; however, attention was called to the augmentation of thrust at reduced values of V/nD. The form of presentation of the results of the present experiments makes it convenient to examine the efficiency of dual-rotating propellers throughout the useful range of V/nD under conditions of constant-speed operation and this will be done for obvious reasons.

The net effect of substituting dual rotation for single rotation is clearly apparent in figures 30 to 32; within the range of Cp covered by these curves, it is a general improvement of efficiency which is relatively small at the peak but much greater at reduced values of V/nD. It will also be noticed that the magnitude of the improvement increases with both solidity and power coefficient.

The source of this improvement is, of course, indicated in a general way by momentum theory. Since thrust is produced only by the creation of axial momentum, the conversion of rotational momentum into axial momentum results in a corresponding increase of the thrust obtained with a given power input. However, more detailed information can be obtained from figures 9 to 12. By comparing the curves which correspond to single- and dual-rotating propellers of equal solidity, it will be found that at equal blade angles both the power and the thrust are augmented by the use of dual rotation.

The reasons for these increases of thrust and power are not difficult to find. At a given value of V/nD, the axial velocity through the six-blade dual rotating propeller will be substantially equal to that for the six-blade single-rotating type because their thrusts are nearly equal. (It may be noted that the slow contraction of the slipstream precludes much change of axial velocity between front and rear members of the tandem combination.) However, the induced tangential velocity in the plane of the forward member of the pair will be little more than one-half as great as the corresponding quantity for the sixblade single-rotating model because their torques have approximately that ratio. Therefore the angles of attack of the elements of the former exceed those of the latter and the thrust and power per blade are correspondingly increased. In the case of the rear member of the tandem pair, the torque is known to be substantially equal to that of the forward one. And because the resultant velocities of corresponding members of the two have practically equal magnitudes, the equality of torque implies approximate equality of the effective angles of attack. This is possible, despite the inequality of blade angles, because the tangential velocity produced by the action of the forward member must largely nullify the self-induced tangential velocity in the plane of the rear one and, for the reasons given in the following paragraph. the result is that the latter's thrust is even greater than that of the forward member. Thus the torques and thrusts of both members of the tandem pair exceed half of the corresponding quantities for the comparable single-rotating type.

The increase of efficiency with fixed values of Cp and V/nD is also readily explainable within the range of unstalled operation. For this purpose it will be convenient to replace the forces on a blade of the forward member of a tandem pair by those which act upon a "representative element" and to do the same for one blade of a comparable single-rotating propeller. In considering these forces it must be remembered that, in two-dimensional motion, the relative force vectors for a conventional airfoil maintain a substantially fixed inclination with respect to the relative wind direction throughout the useful range

of C_L. (See reference 9.) Now, since the introduction of dual rotation causes a reduction of the induced angle of attack which corresponds to a given blade power loading, the inclination of the relative wind with respect to the plane of rotation and that of the resultant force vector to the axial direction, must be correspondingly reduced. The result of the rotation of the force vector is, of course, to augment the ratio T/F and, therefore, to improve the efficiency. The same explanation holds for the rear member of the tandem pair and the improvement in this case is further augmented by the influence of the forward propeller.

Under the conditions of stalled operation, the direction of the resultant force on a representative element is practically that of a perpendicular to the chord, that is, when the wind direction is fixed, the vector rotates with the profile. (See reference 10.) The superposition of this effect upon the one described in the preceding paragraph causes the improvement of efficiency due to the tandem arrangement to be augmented as V/nD is reduced.

Further evidence tending to substantiate the hypothesis that induced tangential velocity is the principal factor which controls the efficiency of high-pitch propellers is found in the fact that the power absorbed by the forward member of the six-blade dual-rotating combination is substantially equal to that of the isolated three-blade propeller when both have the same blade angle and operate at the same value of V/nD. This relationship is not superficially apparent since the values of Cp for the six-blade dual-rotating type are more than twice those for the three-blade propeller at all but the highest value of V/nD. However, the power coefficients for the forward and rearward members of the tandem pair are not equal at reduced values of V/nD and, when values of Cp (r.h.) are calculated from the tabular data and compared with those for the isolated three-blade propeller, it is found that the differences are negligible until V/nD becomes relatively small. Then the power absorbed by the three-blade propeller becomes distinguishably larger than that for the forward member of the dual-rotating combination. This apparently indicates that the difference between the axial velocities in these two cases has a practically negligible effect at all but small values of V/nD. It also furnishes convincing evidence of the validity of one of the fundamental concepts of the vortex theory of propellers, that is, that no upstream rotational flow is induced by a propeller.

Before concluding this discussion of solidity and dual rotation, further attention should be given to the envelope curves of figure 27. These curves simply show the severe limitations which low solidity and

single rotation impose upon the conversion of power into thrust. Their implications with reference to the take-off characteristics of heavily loaded, high-speed aircraft can hardly be overemphasized.

Effect of number of blades. The characteristics of propellers having three and four blades of NACA type E have been presented in figures 13 and 10, respectively; similar curves for comparable propellers which have fever and wider blades are shown in figures 15 and 14. The two-blade E" and the three-blade E models have the same solidity; the three-blade E' and four-blade E models are also of equal (but one-third greater) solidity. The characteristics of these same models, without spinners and at blade angles of 15° to 45°, have been previously reported in reference 3.

The characteristics of each pair of comparable models differ so slightly that the effects of altering the number of blades while retaining a given solidity can only be discerned by superposing the curves. To avoid confusion, a single example of such superposition is presented in figure 36. There it is apparent that at equal blade angles the model with the larger number of blades absorbs the greater power and develops the greater thrust at large values of V/nD; whereas the reverse is true when V/mD is small. It also appears that the model with the larger number of blades attains a slightly superior maximum efficiency but that its efficiency is definitely inferior at reduced values of V/nD. Similar differences characterize comparable curves for both solidities and for all blade angles between 350 and 65°; the magnitudes of these differences increase somewhat with blade angle and are greater in the case of two versus three blades (small solidity) than those found when three blades are compared with four (large eclidity).

Three sets of $C_{\rm DM}$ (and η) versus V/nD curves have been prepared to illustrate the effects of altering the number of blades under various conditions of constant speed operation; they appear in figures 27 to 39. Inspection reveals that maximum efficiency is almost imperceptibly affected but that improved efficiency is obtained at reduced values of V/nD by reducing the number and increasing the width of the blades.

In seeking an explanation for this somewhat surprising result, it is worth remembering that the elementary vortex theory predicts no change of efficiency with number of blades so long as solidity remains unaltered. To be sure, the necessity for small "tip-loss corrections," which depend upon the number of blades, is recognized, but the analyses of Prandtl and Goldstein (reference 11) indicate that efficiency will

improve as the number of blades increases and that the magnitude of the improvement may be expected to increase with V/nD. The present results appear to refute both of these predictions.

It appears to the writer that the observed effects of altering the number of blades upon the thrust and power in unstalled operation at a fixed-blade setting are in accordance with certain basic concepts of vortex theory. The primitive form of the so-called vortex theory of propellers assumes an infinite number of blades and relates the inducodvelocity components to the total thrust and torque. In reality, however, the induced velocities are controlled by the actual vortices in the wake and their values at points of a given blade will obviously be more influenced by the vortex sheet of that blade than by those of the other blades. Therefore, if the strength of the vortices in the wake of a given blade be increased - as is the case when the blade is widened - the induced velocities at the points of that blade are necessarily correspondingly augmented. Now, since the induced velocities reduce the effective angle of attack when the thrust is positive, it would seem to follow logically that increasing the width of a blade of given pitch angle must reduce the thrust and power coefficients so long as the blade elements remain unstalled.

The reversal of the sense of the thrust and power differences at reduced values of V/nD (with fixed pitch) is probably the result of a smaller portion of the wide blade being stalled than is the case with the narrow one. It appears that this condition must prevail if the induced angles of attack increase with blade width. If stalled flow extends farther out on the narrow blades than on the wide enes, the forces acting upon the wide-blade propeller will, naturally, be greater.

When the blade angles are fixed, the improvement of efficiency obtained at small values of V/nD by reducing the number of blades would follow logically if the radial extent of stalled flow were thereby minimized because the ratio T/F for an element is drastically reduced by the separation of flow. Upon this basis, an even greater increase of efficiency might be expected to occur at a given low value of V/nD under constant-speed operating conditions because equalization of the values of Cp for the two models could be accomplished only by making the pitch angles of the narrow blades greater than those of the wide ones.

Thus, acceptance of the concept that induced angles of attack increase with blade width appears to provide the basis for a satisfactory explanation of the principal effects of altering the number of blades in a propeller of given solidity.

Peculiarities of four-blade propellers. - The envelope efficiency curves of figure 17 indicate that four-blade propellers of both singleand dual-rotating types experience greater losses of maximum efficiency with increasing pitch than do the corresponding six-blade models. characteristic might be ascribed to a more pronounced nonuniformity of disk loading if it were not for the fact that the envelope for the three-blade single-rotating propeller is flatter than that for the comparable four-blade one. When it is noted that the introduction of dual rotation augments the maximum efficiency of both four- and six-blade propellers by amounts which are approximately tripled as V/nD increases from 2 to 4, one might suspect that the apparent peculiarily had its root in the development of inconsistently high efficiencies by either the three- or both six-blade models. However, this suspicion seems to be unwarranted because the envelopes for the three- and sixblade single-rotation models are, as might be expected, fairly uniformly separated throughout their lengths.

The cause of this apparent inconsistency must therefore be left to conjecture - for the present, as least - but recent reports of unusual vibration in four-blade propellers and the hypothesis that its cause may be traced to the geometry of the vortex system may warrant further investigation of the peculiarities pointed out here.

CONCLUDING REMARKS

The results of this investigation indicate that:

- (1) Spinner diameter is not critical when the propeller blades have faired shanks, but small irregularities of form at the bladespinner junctions may have serious adverse effects.
- (2) The benefits derived from the use of spinners increase with pitch and are greater for single- than for dual-rotating propellers.
- (3) The efficiency versus V/nD curves for constant-speed propellers have much flatter peaks than those for the fixed-pitch type; they are practically rectilinear throughout the low-speed range and the curves which correspond to various power coefficients define, for each type of propeller, a highly significant envelope.

- (4) Increasing solidity by increasing the number of blades will enable take-off and climbing performance to be greatly improved without serious loss of high speed.
- (5) Under present design conditions, tandem propellers are only slightly superior to conventional ones of equal solidity as regards high-speed performance but they offer marked advantages in take-off and climb. Their superiority under all conditions will increase as larger values of hp/D^2 are used.
- (6) Reducing the number of blades in a constant-speed propeller of given solidity has a negligible effect upon the maximum efficiency but a beneficial one upon low-speed efficiency.
- (7) Bade power loading (Cp/no. of blades) is a far better index of propeller efficiency than is disk power loading, Cp.

In view of these findings, it is suggested that propellers of high solidity offer most of the advantages heretefore obtained by increasing diameter, and their use is recommended for the improvement of take-off and climb. It is pointed out that they promise economies of weight and landing-gear height and that they are particularly suitable for use with two-speed drives. Attention is also called to the now clearly established superiority of the tandem, or dual-rotation, arrangement. Under conditions of constant-speed operation, this is so much greater than that indicated by ordinary envelope efficiency curves that early incorporation of such propellers in high-powered, high-speed airplanes would seem imporative.

Stanford University, Stanford University, Calif.

REFERENCES

- 1. Lesley, E. P.: Tandem Air Propellers. T.N. No. 689. NACA, 1939.
- 2. Lesley, E. P.: Tandem Air Propollers II. T.N. No. 822, MACA, 1941.
- 3. Losloy, E. P.: Propeller Tests to Determine the Effect of Number of Blades at Two Typical Solidities. T.N. No. 698, NACA, 1939.
- 4. Biermann, David, and Hartman, Edwin P: Tests of Five Full-Scale Propellers in the Presence of a Radial and a Liquid-Cooled Engine Nacelle, Including Tests of Two Spinners. Rep. No. 642, NACA, 1938.
- 5. Lesley, E. P., and Reid, Elliott G.: Tests of Five Metal Model Propellers with Various Pitch Distributions in a Free Wind Stream and in Combination with a Model VE-7 Fuselage. Rep. No. 326, NACA, 1929.
- 6. Weick, Fred E.: Aircraft Propeller Design. McGraw-Hill Book Co., Inc., 1930.
- 7. Reid, Elliott G.: Rigorous Performance Prediction Without Drudgery. Jour. R.A.S., vol. XLIV, no. 350, Feb. 1940, pp. 176-194.
- 8. Biermann, David, and Hartman, Edwin P.: Full-Scale Tests of 4-and 6-Blade Single- and Dual-Rotating Propellers. NACA, ACR, Aug. 1940.
- 9. Reid, Elliott G.: A Simplified Analysis of Static Longitudinal Stability. Jour. Aero. Sci., vol. 4, no. 9, July 1937, pp. 375-383.
- 10. Knight, Montgomery: Wind Tunnel Tests on Autorotation and the "Flat Spin." Rep. No. 273, NACA, 1927.
- 11. Glauert, H.: Aerodynamic Theory, W. F. Durand, ed., vol. IV, pp. 261-269. Julius Springer, Berlin, 1935.

a - Small spinner

() - Number of blades

S - Single rotation

```
78-
```

```
D - Dual rotation
                                              b - Large spinner
Fig. 6. Blade form curves.
     7.
          Typical test results.
     8.
          \eta vs. C_S - (6)S, a and b.
                  and n
                                 V/nD - (6)Sa
     9.
                            vs.
          CP, CT
    10.
                                       -(4)Sa
             11
    11.
                    Ħ
                        11
                             **
                                  11
                                       -(6)Da
    12.
                                       - (4)Da
                        Ħ
                             11
                                  **
                                       - (3)Sa
    13.
             **
                    11
    14.
                                       - (3)Sa (E' blades)
                                  11
    15.
                                       - (2)Sa (E" blades)
          \eta vs. V/nD - E blade propellers with and without spinners.
    16.
          Envelope efficiency curves - from figure 16.
    17.
          Construction of \eta vs. V/nD curve - constant speed propeller.
    18.
                    V/nD - (6)Sa
    19.
               vs.
    20.
                           -(4)Sa
          11
                17
                      11
    21.
                           -(6)Da
    22.
                           -(4)Da
                      11
          Ħ
    23.
                           -(3)Sa
                           - (3)Sa (E' blades)
    24.
    25.
                           - (2)Sa (E" blades)
    26.
          Figure 20 transposed to Cartesian coordinates.
          Envelopes of CpT vs. V/nD corresponding to figures 19-23.
    27.
          Chart for evaluation of Cp.
    28.
    29.
          Chart for evaluation of allowable tip speed.
    30.
          C_{pm} and \eta vs. V/nD for E-blade models, C_p = 0.3.
    31.
                                                     C_p = 0.4.
    32.
                                                     C_{\mathbf{p}} = 0.6
                                    full scale propellers, C_p = 0.4.
    33.
          C_{pm}/B and \eta vs. V/nD for E-blade models, C_p/B = 0.1
    34.
                        17
                             Ħ
          \eta/\eta_{4}
    35.
          C_p, C_m and \eta vs. V/nD - (3)Sa and (2)Sa (E'' blades).
          C_{p\eta} and \eta vs. V/nD for wide-blade models, C_p = 0.3.
    37.
                                                         C_{\mathbf{p}} = 0.4
    38.
    39.
                                                        C_{\mathbf{p}} = 0.6.
```

TABLES
Q
DEX
A

Test	1,2	4,5	6,7	0,0	12	118	20,21	13,14	18,19	15,16	22	17	300	26,27	20 TO	#0°	0 K	48.49	50,51	53,54	60,61	200	29 :	41,59	20° 20°	47.63	40	45	99	89	20	73	74	75	16	44	67	20 5	72
Root condition	Plain	#	t	*	Faired	£	Ap. closed	=	=	=	uedo "		Plain	= #	: :	100 to 10	DAJTRJ	Plain	=	=	ŧ	Faired	: ·	Plain	: 12	=	Faired	=	Plain	=	=	8		E 1	= 1		F #	: =	: E
Spinner	Sma11	2:	=	=	=	2	Large	E	ŧ	2	= 1		SH8.11	= 8			=	E	£	E	=	8 1	: 1		: #=	=	=	=	=	=	=	= :	E 1	2 1	= 1	= 1	= 1	: 8	: =
Blade	35	45	55	65	45	65	35	45	55	65	\$	65	35	45	3 6	0.0	2 LG	300	45	55	65	45	9	35	1 ი		45	65	35	45	55	99	35	45	22	65	35	န ၊	
des type	M	=	=	=	E	=	E	=	E	=	= :	E :	= 1	= 8	: 1	: =	=	E	=	E	E	= :	E 1		: =	*	=	E	E	=	=	=	Ē	= 1	E :	=	٦ ا	= :	: #
Blades no. ty	9	2	=	=	=	=	=	=	=	=	= :	=	4:	= =	: :	: =	: =	9	=	=	=	= :	= '	4:	: =	=	*	=	ю	=	=	=	£ :	= 1	= :	E	Q:	= 1	: E
Rota-	Single	=	E	=	=	E	ŧ	E	=	=	= ;	E 8	= 1	= =	: 2	: 2	: =	Dual	=	=	=	= 1	E 1	= =	: 2:	=	2	=	Single	=	ŧ	ŧ	2 :	= :	= :	=	t	= 1	: :
Table	7	Q	ท	4	သ	9	4	۵	0	ន	11	25	13	7.	9,	9 C	λ α			21	22	23	24	52	3 6	~ &	000	န			33	34	35	36	37	38	39	9	43

TABLE NO. 1

Six-Blade	Propeller
β =	35°

Small Spinner Plain Blade Roots

		Test No) <u>. 1</u>		Test No. 2									
V/nD	C _T	c _p	ŋ	cs	V/nD	C _T	СP	η	cs					
1.589 1.514 1.436 1.380 1.307 1.241 1.167 1.088 1.021 .955 .894 .816 .760 .689 .618	0.0181 .0530 .0815 .1091 .1275 .1508 .1693 .1899 .2092 .2252 .2390 .2422 .2440 .2442 .2461 .2501	0.0955 .1290 .1635 .1942 .2150 .2379 .2560 .2727 .2887 .2986 .3095 .3183 .3213 .3226 .3244 .3295	0.314 .654 .755 .807 .819 .829 .820 .812 .789 .770 .738 .679 .620 .575 .523 .469	2.636 2.396 2.176 1.993 1.876 1.742 1.628 1.515 1.312 1.210 1.126 1.026 .954	1.648 1.583 1.509 1.444 1.297 1.234 1.162 1.092 1.020 .959 .819 .757 .688 .620	0.0237 .0590 .0832 .1082 .1297 .1518 .1711 .1915 .2082 .2273 .2374 .2419 .2437 .2444 .2461 .2493	0.0914 .1369 .1669 .1942 .2177 .2389 .2587 .2766 .2880 .3003 .3077 .3198 .3208 .3219 .3249 .3290	0.428 .682 .752 .804 .817 .804 .790 .772 .740 .673 .622 .574 .521	2,662 2,359 2,160 2,010 1,865 1,726 1,618 1,504 1,401 1,298 1,216 1,118 1,029 950 ,950 ,861					
•551 •487 •402	.2539 .2558 .2588	.3339 3372 .3411	.418 .369 .305	.687 .606 .499	.552 .484 .414	.2536 .2566 .2578	.3343 .3372 .3408		.688 .554 .473					

TABLE NO. 3

W-84

TABLE NO. 2

		န		2000 2000 2000 2000 2000 2000 2000 200											Roots		ည္မ	5.829	3,510	3.185	970	853	2,371	
		۴	L	8888									ď	,	Spinner Blade	en en	F	96	286					
Roots	No. 7	C.P.	1	6561 6561 7345					• •	• • •	• • •	•	0 % GT # ET & FE		Prop.Small Sj 65° Faired	Test No.	C _P	10	1.448					
Biade Roots	Test	C _T		2084 2304									Ē	•	0 H	FI G	- 5	+	2000				_	
Plain		∆/n	0	2000	2,370	2,150	1,898	1,645	1,323	1.089 1.089	. 824 . 719				Six-Blad		V/nD	14	3,767					
		န	100	2.086 2.989 2.989 2.989	2.630	2.233	1.995	1.756	1.272	1.006 1.006 .889	1.517				doots		ည္တ	18	272	100	22.5	969	1.583	1.350
55°	9	F	100	817	888	43.4	660	587	423	282	.508		v.	, ,	Spinner i Blade I	위	۴	0.619	808	883	85.	186	695	905
	Test No.	C _P	15	. 6660 . 7405	7945	7945	7580	7380	7175	7278	.7210		TABLE NO.		Small Faire	Test No.	ري ا	2136	3209	3902	4494	4969	5019	2080
g.		C _T	1	2325	2696	2739	2652	2617	2553	2563 2552 2552	2582		Ē		de Prop	FI	-		1221	1694	2168	2484	2521	2535
		V/nD		2.444 2.732 2.615	2.360	2.129	1.884	1.650	1.314	942	1.420				Six-Blad		7./nD	2.326	2.127	1.957	1.769	1.570	1,381	1.182
		စ္မ		3.160 2.957 2.721 2.535	2,250	1.935	1,720	1.484	1.276	1.068 981 840	.623				S	3,920	3,448	3,105 2,989	2,819	2,592 2,441	2,320 2,170	2,040 1,904	1.600	1,285 1,097
		F		0.596 8.708 8.85 8.85 8.85	888	38.5	748	687	525	44.5 378	244				F	0.750	770	758	665	586	.553	443	360	222 279 236 236
Roots	No. 5	- CP		0.2106 .2571 .3110	4200	4715	5005	4926	5005	5040 5055 5140	5284		ots	No. 9	C _P	408 1.428 1.450	1.468	1.481	1.338	1.256	1.092	1.054	1,002	971
Blade Ro	Test)	r L		0.0541	1683	2325	2495 2495	2501	2539	2590 2607 2636	2651		Spinner Blade Root	Test N	$c_{\mathbf{T}}$	2520	3045 3045	3347	3080	2895	2559	2469	2297	20165
Plain E		Δu/v	Ī	2.254 2.254 2.155 0.056	1.946	1.669	1,499	1,290	1.112	932 858 737	.548	4	Small S Plain B		Λ/nD	040	715	350	890	527.	384	96	750 595	272 082 88
		ဆ	1	882 747 520	352 138	083 949	723	507	287	.073 .978 .854	.627	ILE NO.				685	228	924	762 660	399	120	949	515	325 173 019
1011		- -	Т	245 3.8 743 2.8 809 2.7 832 2.8	cu cu			1 -1				TABLE	ller	-	<u>۔</u>	Ĺ								252 1
= 45°	n +2	GP -		2753 2985 3525									e Propeller = 65°	t No. 8	CP T	0								935
anerc_vic		-		0.0458 0.1 0.0916 .2 1125 .2									Six-Blade p =	Test								_		
ā		Մ											St		r F	0	<u> </u>							2070
		V/nD		2.333 2.225 2.155 0.46	946	67E	566		1.03	93.	67 55				V/nD	5.960	633	282	940	2,631	292	98.	505	1.56

TABLE NO. 8

																					Tables 7,8,9,10
		ွန	3,192	2,915	2,520	2,190	2.057	1.778	1.679	1.482	1.237	1.130	894	.665					c	ر ا	33,38,38,38,38,38,38,38,38,38,38,38,38,3
Closed		۶				_											Closed		-	-	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
	No. 14	C _P	0.1933	2510	3421	.4139	4380	4839	4879	4870	4563	4938	5020	5138				No. 16	٥	۶۰	1,306 1,334 1,334 1,223 1,223 1,223 1,223 1,223 1,027 1,02 1,02 1,02 1,02 1,02 1,02 1,02 1,02
Large Spinner Spinner Apertures	44	C.H.	0.0514	.0847	1398	1910	2359	2500	2530	. 2533	2559	2635	2637	2674			pinner Apertures	Test]		£4	2.2481 2.2676 3.2886 3.2886 3.2889 3.2899 3.2999 3.
Large Spinner		U/nD	005	222	2,031	1,838	1.641	1.545	1,344	1.286	1.176	983	780	583		Q	Large Spinner Spinner Apert		. da/v		4.000 4.
		ည	3 250	2,956	2,590	2,240	2,090	1,805	1.589	1,492	1.279	1.186	086.	. 744 . 623		TABLE NO.	•		٠	s	33,917 36,536 36
Propeller 45°	. 13	٤	0 544	714	.821	848	947	815	717	676	584	546	451	285 285 285		н	Propeller 65°	13	•	-	0.771 736 736 736 737 734 734 734 735 736 736 737 736 737 737 737 737 737 737
lade Pr β = 45	Test No.	ပ	1001	2407	.3214	4010	4310	4756	4870	4860	4880	4910	4980	5039			x-Blade Pro p = 65°	Test No.		g ₄	1.302 1.333 1.365 1.403 1.403 1.516 1.082 1.082 1.082 1.083
Six-Blade β ≅		ر ت	1010	0773	•									2638			S1x-B]			ĘH O	0.2430 2646 2646 2060 3.2093 3.221 3.221 3.221 2.293 2
	ı	V/nD	2	2,221	2.060	1.864	1.770	1.572	1.481	1.294	1.204	1.031	854	. 652 652						a /	4,130 3,5,260 3,5,260 3,5,260 3,5,260 2,5,460 2,5,460 2,5,460 2,5,460 1,6,60 1,6 1,6 1,6 1,6 1,6 1,6 1,6 1,6 1,6 1,6
	ŀ		•	ထာထွလ	၃ ထု (Σ. ι) বু	2.5	100	1 .5	1 20 (ភ ស -	7. 2.	48	<i>x</i>			1			26 4 4 4 5 8 9 4 4 4 5 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
		s _o	-					_	_	_		_		5634	-				•	ည 	2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2
Closed		F -		0.670	842	841	926	2777	759	648	642	25.	• •	342	•		Closed	6.	ı	۶ —	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ures	No. 21	C _P		0.1220	2134	.2372	.2676	2832	405	3193	318	3217	3225	3333	Ž.		r tures	No.	۱	Մ	0.5565 6920 6920 7220 7220 7550 7750 7750 7750 7700 770
inner Apert	Test	ت با	•	0510	1288	1509	.1853	2043	2342	2408	2406	2441	.2478	2543	.2559		Large Spinne Spinner Aper	Test		ည် —	0
Large Sp Spinner		Un/V		1.540	1.394	1,319	1,193	1.041	986	906	.851	778	.656	508 453	408	6.	Large Spinn		,	V/2	2.917 2.917 2.917 2.917 2.917 2.917 2.917 2.917 2.917 2.917 2.917 2.917 2.917 2.917
		cs	,	2,605	2.146 1.995	1,851	1.733	1.606	1.403	1,299	1,185	1.00 1.01	933	765	602	TABLE NO.	£4			ဗ္ဗ	2.5.20 2.20 2.20 20 20 20 20 20 20 20 20 20 20 20 20 2
Propeller 35°	08	F	1		842 886	.840	843	828	792	771	727	999	565	8 8 8 8	346		Propeller 55°	138		F	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
	Test No.	C _P	†	0.1003 0	1981	5208	2416	2616	2913	2998	3111	3185	3206	3284	.3352		- N	Test No.		C _P	0.5730 6132 7160 7440 7620 7620 7620 7620 7620 7620 7620 762
Six-Blade β =		C _T	-	0300	.0898 1138	1353	1562	1764	2134	.2266	2408	2427	2433	2474	.2524		Six-Blade			ا ئ	0.1555 1771 2071 2071 2071 2080 2077 2080 2077 2080 2080 2080 2080
		V/nD												612						Qu/N	2.965 2.965 2.965 2.065

HACA	10 0	ı							Tables 11,12,13,14,15
	Spinner Blade Roots							တ္မ	2,634 2,634 2,634 2,634 2,634 2,634 2,634 2,634 1,634 1,635 1,636
			ဗ္ဗ	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2				F	0.4990 80.00 8
NO. 13	Small Plain		F	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0		oots	No. 32	- -	0.412 4770 6774 6774 6776 6886
TABLE N	.er	No. 30	C _P	0.0860 1159 1159 11525 11679 1822 1822 2040 2198 2276 2287 2287 2287 2287 2287 2287 228		Spinner Blade Root	Test	ۍ ت	0.1072 1198 1189 1180 1180 1180 1180 1180 1180
	Propell	Test	5 F	0.0346 0.0586 0.0752 0.0752 0.0590 1.1069 1.1074 1.1731 1.1731 1.1731 1.1731 1.1731 1.1731 1.1731 1.1731 1.1731 1.1731 1.1733 1.	15	Small : Plain }		Qu/r	0.000000000000000000000000000000000000
	Blade β = 3		V/nD	0.000000000000000000000000000000000000	TABLE NO.	£		တ္မ	23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 24.00 24.00 25
	Four-				ā	Propeller 55°	31	د 	0.070 0.070 0.070 0.082 0.
	vres Open					Blade Pr ß = 55	Test No.	C _P	0.4280 .4580 .4580 .5180 .5580
	Spinner ir Aperture		င္မ	7300 7300 7300 7300 704 704		Four-Blade g =			0.1132 1306 1473 1617 1795 1990 1990 1990 1992 1773 1773 1773 1773 1773 1773 1773 177
ឌ	Large Sp Spinner	7	_ F	7709 7726 7736 7736 668 668 7736 7736 7736 7736				Uu/n	00000000000000000000000000000000000000
NO.		No. 17	C _P	2000 2000 2000 2000 2000 2000 2000 200			ı		
TABLE	ler	Test	_ წ	2350 1 2572 1 2574 1 25913 1 25913 1 25913 1 25913 1 25913 1 25973 1 2		1		န	6.000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
	Propeller 65°		- Gr/	4.4.0.000 4.5.0.000 4.5.0.000 6.0.0000 6.0.000 6.0.000 6.0.000 6.0.000 6.0.000 6.0.000 6.0.0000 6.0.000 6.0.000 6.0.000 6.0.000 6.0.000 6.0.000 6.0.0000 6.0.000 6.00000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.				F	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
	Six-Blade β =		//	နေ့နှ လုံလုံလုံလိုလိုလိုလို		ots	No. 27	C _P	0.1410 .1865 .2406 .2752 .2752 .23198 .3456 .3466 .3466 .3466 .3466 .3466 .3560 .3560 .3560
	8 1					Spinner Blade Roots	Test	L _D	0.0373 .0647 .0847 .0847 .1036 .1238 .1531 .1756 .1756 .1776 .1782 .1782 .1782 .1783 .1782 .1783 .1783 .1783 .1783 .1783 .1784 .1883
	tures Op				4.	Small Sp Plain B		dπ/ν	2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.
	Spinner er Aperti		အ	223 955 570 570 565 567 567 569 597 596 597 596 596 597	E NO. 1	<i>0</i> , H		ູສ	596 661 661 661 108 108 108 108 108 108 108 108 108 10
я	Large Sp Spinner	22	_ F	83888888888888888888888888888888888888	TABLE	eller	91	٠ -	724 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8
LE NO.		è	C _P	23 24 24 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4		de Propello = 45°	t No. 2	- L	11228 1693 1205 2305 2707 2840 340 340 340 340 340 340 340 340 340 3
TABLE	ller	Test	 	0.0452 0.0766 0.0766 0.064 1294 1809 2249 2249 2451 2451 2451		Four-Blade p =	Test	_	0276 0.0540 0.0781 0.0781 0.0781 0.0781 0.0781 0.0781 0.0781 0.0781 0.079 0.07
	Propelle		67 —	222 222 222 242 242 242 252 252 252 253 253 253 253 253 253 25		ደ		/nD C _T	263 0,02 0,03 0,03 0,03 0,03 0,03 0,03 0,0
	Six-Blade β =		/A	000001111111111			ļ	u/n	0000011111111111111111111111111111111
	ST.	İ							

TABLE NO. 17

16
Š.
ABLE
EÌ

AUA									Tables 16,17,18,19
	Roots							င္မ	22 22 22 23 24 25 25 25 25 25 25 25 25 25 25 25 25 25
	pfinner Blade		န္	23.441 23.143 23.143 23.100 25.100 25.005 26.005 20.005 20.005 20.005 20.005 20.005				ŀ	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
	Small S Faired	m!	F	647 647 648 648 648 648 648 648 648 648			49	$\Delta C_{\mathbf{P}}$	0.0067 0.0039 0.0020 0.0020 0.0027 0.0027 0.0031 0.
2		t No. 28	G.	1836 1836 2203 2203 2280 2380 3372 3470 3332 3495 3500		Spinner Blade Roots	Test No.	$_{\rm C_P}$	0.1443 1854 2146 22477 2690 3087 3280 3380 3520 3520 3520 3520 3520 3520 3520 352
	eller	E G	ာ L	0.0409 0.0650 0.0860 1.034 1.1396 1.1775 1.1775 1.1775 1.1775		Small Spir Plain Blad		C _T	0.0621 .0972 .1518 .1516 .1720 .1932 .2375 .2375 .2376 .2376 .2376 .2383
	ade Prope β = 45°		V/nD	22 22 22 22 22 22 22 22 22 22 22 22 22	NO. 19	Sm P1		۵u/۸	1.624 1.536 1.470 1.470 1.308 1.205
	Four-Bl				TABLE	tion Propeller 34.3°		္မွ	2.2503 2.297 2.297 2.297 1.798 1.798 1.700 1.285 1.000 1.000 1.918 1.918 1.918 1.918 1.918
			S.	44455555555555555555555555555555555555		ton Pr 34.3°		두	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
		41	F	662 662 663 663 663 663 663 663 663 663		Rota PLH =	48	4CP	0.0086 0007 0007 0002 0002 0002 0003 0003 0003
	r Roots	t No. 3	- P	0.968 1.0012 1.0012 1.0043 1.0044 1.0043 1.0		Blade Dual = 35°	Test No	 a	0.1262 19972 22642 22642 23040 33060 3443 3440 3440 3440 3440 3440
	Spinner Blade Root	Test	o ^T	0.1705 1.844 2.1845 2.2850 2.2830 2.2830 2.2830 2.1930 1.1930 1.1930 1.1930 1.1930 1.1930 1.1930 1.1930 1.1930 1.1930 1.1930 1.1930		Six-B P _{RH} =		C _T	0.0487 0.0756 1.080 1.1815 1.1815 1.2218 2.258 2.2455 2.2455 2.2455 2.29200 2.29200 2.29200 2.29200 2.29200 2.29200 2.29200 2.29200 2.20000 2.200000 2.200000000
9	Small Plain		V/nD	4.000 5.				V/nD	0.050 0.050
• ON GOOD	រទ		ဗ္ဗ	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		r Roots			
	Propell(65°	• 33	F	0 7453 7466 7466 7466 7466 7460 7460 7460 7460		Spinner 1 Blade F		s _o	2, 5, 6, 11, 4, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
	ade B=	est No.	C _P	0.974 1.036 1.024 1.025 1.025 1.025 1.032 987 985 985 985 985 985 985 985 985 985 985	18	Small : Faired	12	F	0.78 480. 480. 484. 487. 883. 883. 8813.
B1	Four-	티	r. T.	1748 2215 2217 22040 2218 2228 2228 2228 2060 1952 1177 1177 1177 1177 1177 1177 1177 11	NO.		No. 3	-C	0.985 1.0000 1.0028 1.0047 1.015 1.015 1.015 1.015 1.015
			du/v	2. 4 183 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	TABLE	Propeller 65°	Test	Ę.	0.1870 .2184 .2184 .2260 .2376 .2376 .2319 .2190 .2190 .2190
	,		Þ	140000000000000000000000000000000000000		Four-Blade Proj		Un/v	4.136 4.006 5.56 6.70 6.70 8.89 8.89 8.89 8.89 8.89 8.89 8.89 8.8
						Fot	1		

Tables 16,17,18,19

W-84

Small Spinner Plain Blade Roots

	Test No. 50 Test No. 51													
		Test N	0. 50					Test N	0. 51					
V/nD	C _T	C _P	ΔCP	ח	c _s	V/nD	c _T	C _P	ΔCp	η	c _s			
2.329	0.0535	0.2192	0,0191	0.568	3.154	2,293	0.0730	0.2452	0.0172	0.688	3.063			
2,241	.0942		.0132	.756	2.891	2.201	1094	3086	.0082	.780	2.791			
2.160			.0085	806	2.702	2.089	.1476	3680	.0037	.837	2.550			
2.052	1566	.3815	.0031	.842	2.490	2.001	.1725	4070	.0034	.848	2.400			
1.960		4230	0003	.855	2.341	1.902	2030	4470	0041	.864	2.230			
1,859			0034	.858	2.160	1.820	.2277	4815	0048	.860	2.100			
1.773		.4984	0079	.855	2.034	1.728	2534	.5115	0089	.856	1.972			
1.678			0088	844	1.910	1.638	2749	.5355	0137	.841	1.852			
1.580	.2822	.5450	0119	.818	1.801	1,528	2888	.5555	0177	.794	1.716			
1.493		.5625	0213	.782	1.673	1.446	2988	.5671	0273	.762	1.620			
1.386	.3010	.5715	0308	.730	1.550	1.353	.3020	.5705	0338	716	1.515			
1.301	.3028	.5730	0354	.687	1.456	1.238	.3050	.5725	0342	659	1.385			
1.214	3070	.5745	0365	.649	1.357	1.171	.3091	5765	0378	.628	1.250			
1.120	.3100	.5795	0380	.599	1.250	1.076		.5790	0364	.580	1.201			
1.033	.3145	.5855	0367	.554	1.148	.966		.5875	0372	.522	1.074			
.930	.3200	.5905	0397	.510	1.033	.886	3224	.5930	0382	482	.984			
.846	.3238	.5940	0393	.461	.939	.794	.3276	.5990	0426	434	.880			
.775		.6014	0404	.425	.857	.685	.3327	.6085	0421	.368	.755			
.660			0427	359	.727	.596			- 0420		.656			
.582			0437			•								

TABLE NO. 21

Six-Blade Dual Rotation Propeller $\beta_{RH} = 55^{\circ}$ $\beta_{LH} = 53.1^{\circ}$

Small Spinner Plain Blade Roots

		Test h	io. 53			Test No. 54						
V/nD	C _T	C _P	ΔCP	η	cs	V/nD	$c_{\mathbf{T}}$	C.	ΔCP	η	cs	
3.002 2.889 2.783 2.636 2.522 2.392 2.275 2.1055 1.912 1.791 1.668 1.437	0.1814 .2084 .2369 .2674 .2919 .3137 .3269 .3328 .3308 .3292 .3248 .3205	0.6612 .7154 .7658 .8180 .8563 .8860 .9041 .9053 .9009 .8345 .8673 .8518	0.0250 .0198 .0096 .0000 0020 0220 0372 0478 0536 0528 0528 0519	.842 .861 .862 .859 .847 .822	3.266 3.091 2.939 2.741 2.598 2.447 2.321 2.198 2.066 1.960 1.845 1.723 1.487	3.030 2.938 2.840 2.690 2.562 2.448 2.326 2.210 2.095 1.960 1.865 1.725 1.600	0.1755 .1993 .2235 .2566 .2829 .3067 .3252 .3315 .3320 .3296 .3259 .3215 .3195	0.6420 .6965 .7390 .8415 .8720 .9000 .9015 .8855 .8785	0.0237 .0158 .0090 .0028 0034 0119	0.826 .841 .859 .864 .862 .861 .807 .772 .731 .699 .644 .608	3.309 3.170 3.019 2.819 2.654 2.519 2.373 2.254 2.137 2.007 1.915 1.777 1.654 1.553	
1.319 1.202 1.091 .989 .847	.3139 .3141 .3156 .3106 .3091	.8422	0529 0505 0485 0543 0613	.491 .449 .406 .362 .307	1.365 1.244 1.128 1.022 .874 .718	1.381 1.235 1.140 1.009 .914	.3174 .3152 .3155 .3130 .3102	.8375 .8375 .8400 .8460 .8425	0545 0526 0496 0495 0588	.523 .465 .428 .374 .336 .284	1.432 1.281 1.181 1.043 .946 .802	

TABLE NO. 22

Six-Blade Dual Rotation Propeller β_{RH} = 65° β_{LH} = 62.5°

Small Spinner Plain Blade Roots

		Test)	No. 60					Test	No. 61		
/nD	C _T	c _P	ΔCP	n	Cs	V/nD	c _T	c _p	ΔCP	η	
.145	0.3139	1.531	0.0347	0.850	3.822		0.3129	1.532		0.844	Ī
.980	.2420	1.590	.0225	.856	3.620	3,981	.3420	1.585	.0193	.859	
.820	.3630	1.615	.0107	.958	3.470	3.810	.3629	1.611	.0107	.858	ł
.636	.3870	1.639	.0000	.859	3.300	3.640	.3968	1.643	.0000	.856	Į
.470	.4075	1.655	0118	.855	3.135	3,460	.4078	1.651	0128	.854	ı
.300	.4172	1.645	0257	.838	2.988	3.283	.4175	1.641	0300	.836	Ì
.134	4165	1.614	0491	.809	2.850	3.155	.4170	1.618	0500	.813	ļ
990	.4070	1.567	0617	.776	2.730	2.993	.4073	1.565	0653	.779	l
.812	3900	1.489	0757	737	2.602	2.807	.3870	1.482	0765	.733	l
650	.3715	1.416	0743	.695	2.474	2,630	.3692	1.400	0760	.694	۱
. 465	.3493	1.334	0730	.646	2.297	2,462	.3478	1.320	0778	.642	l
.300	.3307	1.267		.600	2.194	2.311	.3316	1.266	0710	.605	Į
2.131	.2966	1.181		.535	2.063	2.150	.3052	1.197	0677	√548	۱
.975	.2819		0594	.487	1.922	1,995	.2988	1.151	0530	.518	۱
.810			0593		1.774	1.820	.2735	1.114	0641		۱
658	2600		0639		1.632	1.643	.2600	1,085	- ,0685	.394	1
.515	2493		0648		1.498	1.486	.2483	1.070	0685	.345	۱
.353	.2453		0640		1.340	1.372	.2443	1.064	0660	.315	١
203	.2430		0616		1.192	1,150	.2443	1.063	0640	.264	ł
996			0628		.984	.998		1.078	0667	229	١

Six-Blade Dual Rotation Propeller Small Spinner Six-Blade Dual Rotation Propeller Small Spinner $\beta_{RR} = 45^{\circ} \qquad \beta_{IH} = 43.8^{\circ} \qquad \text{Faired Blade Roots}$ Six-Blade Dual Rotation Propeller Small Spinner Faired Blade Roots

		Test	No. 52			Test No. 62							
V/nD	C _T	C _P	ΔC _P	ח	cg	V/nD	C _T	C _P	∆C _P	ן יי	Cs		
2.334 2.246 2.155 2.055 1.952 1.865 1.772 1.674 1.579 1.482 1.393	.1277 .1602 .1916 .2172 .2405 .2678 .2869 .2971	0.2090 .2745 .3319 .3850 .4318 .4650 .4928 .5250 .5450 .5610 .5710	0.0211 .0140 .0110 .0055 .0017 0048 0069 0075 0118 0223 0324	.768 .629 .855 .866 .871 .865 .854 .831 .785	3.195 2.906 2.690 2.488 2.510 2.168 2.040 1.916 1.782 1.664 1.560 1.450	4.115 3.965 3.822 3.631 3.466 3.270 3.131 2.864 2.607 2.460	.3702 .3959 .4147 .4247 .4228 .4135 .3052 .5736 .3547	1.551 1.588 1.622 1.854 1.662 1.654 1.654 1.406 1.406 1.334 1.268	+C.0299 + .0161 + .0088 0032 0150 0235 0566 0702 0814 0749 0738	.866 .873 .870 .864 .840	3.767 3.600 3.470 3.283 3.125 2.955 2.848 2.721 2.595 2.462 2.322 2.192		

TABLE NO. 25

Four-Blade Dual Rotetion Fropeller $\beta_{RH} = 35^{\circ}$ $\beta_{LH} = 34.3^{\circ}$

Small Spinner Plain Blade Roots

		Test N	0. 41			Test No. 50						
V/nD	C _T	C.P.	∆C _P	η	^С 8	V/nD	c _T	C.P.	ACP	η	c _s	
1.580 1.506 1.433 1.358 1.300 1.227 1.162 1.086 1.018 .955 .887	.0740 .0922 .1090 .1241 .1390 .1544 .1685 .1799 .1886 .1960 .1983	.1093 .1335 .1548 .1718 .1894 .2006 .2134 .2222 .2317 .2390 .2451 .2501	40.0022 .0017 .0016 .0009 .0005 .0000 0011 0024 0037 0040 0066 0089 0089	0.609 .758 .835 .861 .852 .850 .842 .791 .754 .709 .666 .596	2.688 2.463 2.258 2.080 1.930 1.810 1.692 1.583 1.466 1.362 1.271 1.175 1.104	1.617 1.541 1.478 1.400 1.333 1.271 1.200 1.125 1.059 .990 .919 .852	.0348 .0828 .0993 .1175 .1314 .1465 .1522 .1757 .1858 .1944 .1973 .2002	.1448 .1620 .1906 .1935 .2080 .2182 .2270 .2350 .2457 .2471	+0.0024 .0015 .0018 .0007 0018 0008 0028 0040 0037 0051 0080 0096 0096	0.894 .808 .845 .861 .867 .863 .835 .835 .735 .783 .783 .783	2.590 2.348 2.181 2.014 1.878 1.764 1.524 1.424 1.323 1.220 1.139 1.046	
.752 .683 .626 .568 .483	.2043 .2047 .2092 .2142	.2606 .2660 .2673	0104 0100 0104 0107	.539 .489 .447 .387 .336	.892 .817 .740 .629	.647 .578 .526 .451	.2066 .2097 .2139	.2588 .2620 .2665	0100 0102 0104 0108	.516 .463 .422	.848 .756 .685 .585	

TABLE NO. 26

Four-Blade Dual Rotation Propeller Small Spinner $\beta_{RH} = 45^{\circ}$ $\beta_{LH} = 45.8^{\circ}$ Small Spinner Plain Blade Roots

		Test N	0. 38			Test No. 39						
V/nD	C _T	C _P	AC _P	η	c _s	מת/ע	c _T	C _P	AC _P	ŋ,	cs	
2.321	0.0408	0.1491	+0.0139	0.635	3,396	2,283	0.0510	0,1687	0.0119	0.691	3.265	
2.240		.1961	.0099	.765	3.100	2.199	.0757	.2120	.0109	.785	3,000	
2,151	.0868	.2285	.0075	.817	2.888	2.089	.0967	.2431	.0085	.830	2.773	
2,055		.2607	.0068	.844	2.690	1.990	.1195	.2779	.0064	.856	2.570	
1.947		.2912	.0044	.864	2,492	1.902	.1359	.3004	.0041	.860	2.420	
1.864		.3172	.0017	.858	2.349	1.800		.3267	.0024	.868	2.254	
1.762		.3390	.0000	.859	2.190	1,724		.3404	.0012	.856	2,140	
1.763		.3382	0003	.860	2.191	1.627	.1837	.3583	0012	.834	2.000	
1.674		.3563	0024	.845	2.060	1.525	.1939		0054	.796	1.861	
1.580		.3705	0051	.814	1.916	1,441	.1988	.3763	.0115	.761	1.755	
1.483		.3772	0088	.776	1.805	1.343	.1994		0136	.712	1.635	
1.384		.3790	0132	.731	1.679	2.243	.2021	.3805	0115	.660	1.506	
1,290		.3843	0129		1.561	1.170		.3805	0129	.629	1.418	
1.140		.3845	0125	.608	1.380	1.059	.2065	.3822	0115	.577	1.295	
1.205		.3821	0138	.643	1.460	.956	.2118	.3863	0121	.524	1.156	
1,020		.3861	0122	.554	1.234	.880		.3914	0122	.482	1.063	
.932	.2122	.3896	0125	.508	1.125	.799	.2146		0129	.431	.962	
.836	.2152	.3909	0148	.431	1.008	.704	.2176	.4033	0114	.380	.846	
.766	.2176	.3977	0152	.419	.922	.617	.2174	4078	0140	l .329	.739	
.658	.2196	.4073	0161	.355	.788							
.564	.2205	.4169	0191	.298	.671							

_	V/nD	c _t	C _P	ΔCp	η	cs
Four-Blade Dual Rotation Propeller $B_{RH} = 55^{\circ}$ $\beta_{IH} = 53.1^{\circ}$ Small Spinner Plain Blade Roots	2.959 2.883 2.774 2.632 2.507 2.408 2.275 2.156 1.912 1.798 1.690 1.557 1.476 1.350 1.215		0.4449 .4730 .5095 .5428 .5687 .5840 .6015 .6013 .5930 .5739 .5635 .5556 .5552	0.0268 .0221 .0194 .0135 .0091 .0049 0096 0160 0164 0161 0167 0173 0161	0.803 .830 .839 .841 .852 .838 .809 .777 .746 .707 .671 .635 .555 .508 .455 .363	3.473 3.345 3.170 2.975 2.801 2.682 2.520 2.387 2.269 2.132 2.017 1.898 1.752 1.665 1.526 1.370 1.123
	.782	.1990	.5634		.276	.876
	TABL	e no. 2	8			

Four-Blade Dual Rotation Propeller $\beta_{RH} = 65^{\circ}$ $\beta_{LH} = 62.5^{\circ}$

Small Spinner Plain Blade Roots

4.195 0.1896 1.012 0.0636 0.786 4.190 4.127 0.1959 1.018 0.0547 0.794 4. 4.078 .2041 1.039 .0498 .802 4.049 3.950 .2156 1.048 .0445 .812 3. 3.940 .2158 1.056 .0436 .805 3.901 3.810 .2310 1.070 .0374 .822 3. 3.730 .2367 1.082 .0325 .816 3.678 3.623 .2485 1.085 .0297 .830 3. 3.587 .2516 1.095 .0220 .824 3.522 3.430 .2617 1.082 .0074 .829 3. 3.421 .2620 1.100 .0132 .815 3.356 3.280 .2672 1.080 .0021 .810 3. 3.230 .2683 1.0850011 .799 3.182 3.138 .2699 1.0620107 .796 3. 3.110 .2650 1.0650134 .775 3.079 2.968 .2606 1.0200205 .773 2. 2.895 .2523 1.0090205 .724 2.892 2.790 .2475 .9650222 .716 2. 2.710 .2395 .9450226 .687 2.737 2.628 .2348 .9130266 .676 2. 2.598 .2296 .9090242 .656 2.650 2.447 .2218 .8620233 .629 2. 2.399 .2085 .8380302 .597 2.488 2.290 .2111 .8260233 .629 2. 2.983 .1785 .7580346 .491 2.206 1.991 .1851 .7520276 .490 2. 1.714 .1620 .7110311 .390 1.834 1.642 .1615 .7090190 .374 1.		4	Test N	0. 47			Test No. 63						
4.078 .2041 1.039 .0488 .802 4.049 3.950 .2156 1.048 .0445 .812 3.930 3.910 .2310 1.070 .0374 .822 3.931 3.810 .2310 1.070 .0374 .822 3.332 3.931 .2310 1.070 .0374 .822 3.332 3.931 .2310 1.070 .0374 .822 3.332 3.932 .2485 1.085 .0297 .820 3.230 .2617 1.082 .0074 .829 3.342 .2617 1.082 .0074 .829 3.342 .2672 1.080 .0021 .810 3.3556 3.280 .2672 1.080 .0021 .810 3.3556 3.280 .2672 1.080 .0021 .810 3.3556 3.280 .2672 1.080 .0021 .810 3.3556 3.280 .2692 1.062 .0107 .796 3.3556 3.280 .2699 1.062 .0107 .796 3.280 .2595 1.062 <th>V/nD</th> <th>C_T</th> <th>C_P</th> <th>ΔCP</th> <th>η</th> <th>cs</th> <th>V/nD</th> <th>C_T</th> <th>C_P</th> <th>∆C_P</th> <th>η</th> <th>c_s</th>	V/nD	C _T	C _P	ΔCP	η	cs	V/nD	C _T	C _P	∆C _P	η	c _s	
1.435 .1540 .703 0195 .314 1.538 1.345 .1565 .696 0200 .303 1.	4.078 3.940 3.730 3.587 3.421 3.230 3.110 2.895 2.710 2.598 2.598 2.598 2.999 2.242 2.083 1.900 1.714 1.563 1.435	.2041 .2158 .2367 .2516 .2620 .2683 .2650 .2523 .2395 .2085 .1963 .1785 .1729 .1620 .1540	1.039 1.056 1.082 1.095 1.100 1.085 1.063 1.009 .945 .909 .838 .799 .758 .732 .711 .700 .703	.0498 .0456 .0325 .0220 .0132 0011 0265 0226 0242 0302 0275 0289 0311 0270 0195	.802 .805 .816 .824 .815 .799 .775 .724 .687 .551 .491 .491 .390 .344 .314	4.049 3.901 3.678 3.522 3.356 3.182 3.079 2.892 2.737 2.650 2.488 2.350 2.206 £.025 1.834 1.677 1.538	3.950 3.810 3.623 3.430 3.138 2.968 2.790 2.628 2.447 2.290 2.130 1.991 1.815 1.642 1.500 1.345	.2156 .2310 .2485 .2617 .2672 .2699 .2606 .2475 .2348 .2218 .2111 .1847 .1851 .1732 .1615 .1566	1.048 1.070 1.085 1.082 1.080 1.062 1.020 .965 .913 .862 .761 .752 .723 .709 .697	.0445 .0374 .0297 .0074 .0021 0107 0205 0262 0263 0201 0351 0300 0190 0190	.812 .822 .830 .829 .810 .773 .716 .676 .629 .585 .517 .490 .435 .374 .337	4.119 3.914 3.764 3.569 3.382 3.237 3.107 2.962 2.815 2.678 2.520 2.382 2.251 2.110 1.938 1.759 1.614 1.427	

Four-Blade Dual Rotation Prop Small Spinner Four-Blade Dual Rotation Prop Small Spinner $\beta_{RH} = 45^{\circ}$ $\beta_{LH} = 43.8^{\circ}$ Faired Blade Roots $\beta_{RH} = 65^{\circ}$ $\beta_{LH} = 62.5^{\circ}$ Faired Blade Roots

		Test	No. 40			Test No. 45						
V/nD	C _T	c _P	ΔCP	η	cs	V/nD	C _T	c _P	ΔCP	ŋ	cs	
2.349 2.253 2.178 2.070 1.951 1.865 1.771 1.682 1.589 1.486	.0590 .0757 .0996 .1247 .1446 .1643 .1790 .1895	0.1281 .1823 .2110 .2467 .2840 .3130 .3550 .3550 .3630 .3730	+0.0108 + .0080 + .0083 + .0055 + .0020 + .0007 + .0014 0021 0059 0085 0133	0.530 .730 .781 .836 .857 .869 .869 .830 .791 .748	3.545 3.164 2.973 2.740 2.513 2.357 2.210 2.076 1.950 1.813 1.704	3.990 3.837 3.655 3.464 3.292 3.151 2.989 2.910 2.685	0.1943 .2135 .2307 .2487 .2621 .2693 .2683 .2621 .2483 .2325 .2325 .2329 .2129 .1940	1.032 1.062 1.090 1.106 1.109 1.05 1.080 1.043 .985 .933 .920 .867 .812 .764	0.0473 .0400 .0346 .0215 .0108 0011 0119 0237 0334 0320 0287 0364 0352	0.786 .802 .812 .822 .819 .802 .783 .751 .708 .669 .669 .548	4.152 3.950 3.775 3.545 3.359 3.077 2.960 2.819 2.722 2.684 2.531 2.390 2.275	

W-84

	T	est No.	66			Te	st No.	68	
V/nD	. C _T	C _P	η	c _s	V/nD	C _T	C _P	ן ח	c _s
1.654		0.0662		2.845	2,313	0.0365	0.1226	0.688	3.514
1.578	.0418	.0863	.764	2.575	2.234	.0496	.1465	.756	3.280
1.520	.0552	.1023	.820	2.401	2.151	.0650	.1723	.812	3.050
1.438	.0702	.1185	.852	2.204	2.050	.0789	.1913	.846	2.850
1.365	.0827	.1318	.957	2.050	1.960	.0946	.2151	.862	2.660
1.311	.0913	.1390	.861	1.949	1,859	.1090	.2340	.866	2.481
1.234	.1044	.1495	.862	1.805	1.776	.1205	.2480	.864	2.363
1.162	.1142	.1577	.842	1.683	1.667	.1324	.2603	848	2.184
1.097	1243	.1651	.826	1.571	1.578	.1362	.2700	.797	2.048
1.027	.1320	.1710	.793	1.460	1.482	.1374	.2697	.754	1.924
.950	.1345	.1773		1.342	1.387	.1386	.2696	.713	1.803
.888	.1358	.1777		1.254	1.297	.1391	.2706	.667	1.682
.816	.1366	.1791		1.149	1.209	.1408	.2711	.627	1.566
.760	.1380	.1820	.577	1.069	1.114	.1415	.2720	.579	1.443
.689	.1404	.1836		.967	1.030	.1436	.2762	.535	1.333
.621	.1420	.1863	. 473	.869	.935	.1452	.2775	.490	1.197
.564	.1444	.1897	.430	.786	.854	.1465	.2805	.446	1.100
.475	.1484	.1935	.364	.659	.776	.1489	.2845	.407	.998
.409	1508	.1973	.313	.565	.663	.1516	.2911	.346	.843
1.625	.0331	.0744	.722	2.733	.541	.1540	.2968	.281	.690
1.543	.0508	.0962	.816	2.465	2.284	.0420	.1318	.729	3.421
1.484	.0633	.1103	.852	2.307	2.190	.0593	.1614	.805	3.153
1.403	.0764	.1241	.863	2.132	2.083	.0762	.1875	.846	2.910
1.336	.0886	.1365	.864	1.993	1.994	.0892	.2071	.860	2.731
1.271	.0976	.1450	.856	1.873	1,902	.1031	.2275	.864	2.560
1.202	.1100	.1541	.858	1.748	1.801	.1158	.2416	.864	2.394
1.126	.1207	.1623	.938	1.619	1.720	.1264	.2546	856	2.261
1.065	.1285	.1671	.819	1.523	1.625	.1347	.2662	.824	2.116
.990	.1360	.1733	.775	1.407	1.529	1370	.2709	.775	1.986
.918	.1363	.1780	.704	1.295	1.456	.1380	2709	.743	1.891
.862	.1365	.1784	659	1.216	1.338			.695	1.747

TABLE NO. 33

TABLE NO. 34

Three-Blade	(E)	Propeller
ß =	555	0

Small Spinner Plain Blade Roots

Three-Blade (B) Propeller $\beta = 65^{\circ}$

Small Spinner Plain Blade Roots

	<u>Te</u>	st No.	70				Test No	. 73	
V/nD	c _T	C _P	ŋ	c _s	V/nD	c _T	C _P	η	cs
2.990	0.0951	0.3455	0.823	3.703	4.100	0.1516	0.7860	0.790	4.305
2.847	.1098	.3731	.838	3.421	3.965	.1603	.7994	.796	4.151
2.740	.1206	3900	.848	3.306	3.815	.1730	.8140	.812	3.970
2,615	.1320	4095	.843	3.113	3.650	.1813	.8270	.800	3.797
2.486	.1452	4260		2.946	3.466	.1877	.8220	.792	3.585
2.374	.1524	4390	.824	2.797	3.290	.1860	.8055	.759	3.436
2.257	.1524	.4369	.787	2.663	3.121	.1801	.7700	.730	3.289
2,136	.1519	.4310	.752	2.525	2,992	.1744	.7440	.701	3.176
2.022	.1499	.4220		2.402	2.788	.1636	.6920	.659	3.000
1.911	.1471	.4122		2.282	2.634	.1554	.6550	625	2.869
1.768	.1445	.4020	.636	2.126	2.490	.1487	.6250	.592	2.735
1.651	.1430	.3975	.594	1.985	2,273	.1399	.5910	.538	2.523
1.543	.1428	.3953	.557	1.859	2.120	.1340	.5669	.501	2.374
1.424	.1417	.3930	.514	1.716	1.965	.1164	.5318	.430	2.228
1.308		.3909	.472	1.579	1.803	.1118	.5179	.389	2,055
1.192	.1411	.3925	.429	1.447	1.630	.1018	.4990	.333	1.872
1.077	.1396	.3958	.380	1.298	1.491	.1014	.5000	.302	1.711
.983	.1378	.3950	.343	1.182	1.343	.0997	.4960	.270	1.543
.834	.1373	.3960	.289	1.002	1.138	.1042	.5000	.237	1.306
.677	.1375	.3970		.815	.988	.1044	. 4990	.206	1.135
3.036		.3340		3.787	4,150	.1494	.7808	.789	4.358
2.935	.1009	.3570	.830	3,612	4,020	.1577	.7940	.798	4.213
2.812	.1147	.3815	.847	3.408	3.890	.1664	.8090	.800	4.055
2,658		.4017		3.192	3.710	.1775	.8190	.805	3.860
2,559	.1386	.4166	.851	3.045	3.543	.1858	.8200	.803	3.685
2.437		4285	.839	2.882	3.372	.1883	.8160	.778	3.510
2.308	.1530	.4400	.803	2.720	3.208	.1834	.7910	.743	3.363
2.189	.1522	4330		2.587	3.050	.1780	.7585	.715	3.230
2.072		.4248		2.457	2,862	.1684	.7110	.678	3.062
1.949					2.742	.1613	.6820	.648	2.961

Three-Blade (E') Propeller $\beta = 35^{\circ}$

Small Spinner Three-Blade (E') Propeller Plain Blade Roots β = 45°

Small Spinner Plain Blade Roots

	T	est No.	74				Te	st No.	7 5	
V/nD	C _T	C _P	η	cs	_	V/nD	c _T	c _p	η	cs
1.640	0.0353	0.0867	0.668	2.675	_	2.143	0.0835	0.2190	0.817	2.902
1.580	.0521	.1066	.772	2.476		2.038	.1013	.2480	.831	2.690
1.502	.0705	.1290	.821	2.264		1.950	.1181	.2726	.844	2.529
1.426	.0868	.1467	.838	2,096		1.837	.1354	.2946	.844	2.348
1.353	.1012	.1624	.844	1.947		1.760	.1490	.3121	.840	2.223
1.298	.1132	.1745	.843	1.841		1.665	.1641	.3304	.827	2.081
1.229	.1273	.1874	.835	1.717		1.576	.1726	.3438	792	1.954
1.157	.1406		.816	1.600		1.473	.1771	.3500	.745	1.819
1,091	.1520			1.495		1.390	.1788	.3520	.706	1.714
1.018	.1641	.2166	.772	1.382		1.286	.1829	.3540	.664	1.583
.947	.1721	.2260	.722	1.275		1.199	.1846	.3560	.622	1.475
.885	.1751	.2308	.672	1.186		1.118	.1881	.3601	.584	1.373
.824	.1775		.627	1.103		1.020	.1919	.3650	.537	1.249
.751	.1819	.2353	.580	1.003		.944	.1965	.3710	.500	1.152
•683	.1842	.2410	.522	.908		.844	.2010	.3765	.451	1.028
.617	.1888	.2432	.478	.819		.770	.2028	.3797	.412	.934
•558	.1904		.433	.743		.657	.2070	.3868	.352	.794
. 475	.1988		.376	.627		.543	.2100	.3950	.289	.653
.414	.2012			.542		2.320	.0472	.1601	.684	3.343
1,605	.0449			2,553		2,229	.0662	.1917	.770	3.098
1.532	.0629			2.341		2.272	.0567	.1744	.749	3.224
1.470	.0778			2.188		2.188	.0770	.2089	.806	2.993
1.391	.0948			2.018		2.081	.0933	.2359	.824	2.778
1.327	.1064			1.898		1.998	.1108	.2604	.850	2.617
1.258	.1211			1.769		1.894	.1262	.2816	.848	2.443
1.195				1.661		1.805	.1418	.3034	.843	2.292
1.116	.1474			1.535		1.717	.1554	.3208	.832	2.160
1.059	.1581			1.445		1.625	.1670	.3340	.812	2.026
.985	.1689	.2218	.750	1.330		1.526	.1753	.3503	.763	1.884

TABLE NO. 37

TABLE NO. 38

Three-Blade (E')	Propeller
ß =	55°	-

Small	Spinne	er
Plain	Blade	Roots

Three-Blade (B') Propeller Small Spinner β = 65° Plain Blade Roots

Test No. 76					Test No. 77				
/nD	c _T	CP	η	cs	V/nD	c _T	c _p	η	
3.974	0.1216	0.4367	0.829	3,509	4.115	0.1811	0.9668	0.771	I
.860	.1325	.4640	.817	3.329	3.943		.9870	.768	
.753	.1463	4892	824	3.169	3.810		1.0020	.774	
625	.1615	.5115	829	2.995	3.623		1.0120	775	
.494		.5343		2,828	3.463		1.0200	.774	
376		.5530		2.675	3.280		1.0180	.746	
265		.5600	.775	2.546	3.100	2240	.9810	.708	
2.142	.1930		.742	2,410	2.950		.9356	.682	
2.017	.1922	.5491	.707	2.275	2.791		.8900	651	
.900	.1913	.5415	671	2.147	2.618		.8500	.617	
1.772		.5342	.636	2.008	2.44		.8160	.579	
1.646		.5289	.597	1.868	2.274		.7890	.542	
1.539		5270	.559	1.747	2.122		.7590	.506	
1.421	.1927	.5260	.521	1.614	1.950		.7280	.454	
1.312				1.489	1.81		.7110	.421	
1.197				1.357	1.644		.7030	.379	ļ
.075			394	1.217	1.510		.6970	.348	
.990			.362	1.119	1.343		.6910	.313	
.841			.308	.950	1.139	.1616	.6880	.268	
.732	.1978	.5410	.268	.827	.976		.6800	.230	
3.028	.1112			3,600	4.183		.9678		Į
2.900				3,390	4.030		.9800		
2.800				3.242	3.870		.9940		
2.665				3,051	3.675		1.0130		
2 .55 0	.1700	.5262	.824	2.899	3.530	.2238	1.0190		
2.427	.1839	.5480	.814	2.738	3.370		1.0210		
2.310	.1903	.5580	.788	2.596	3.196	.2281	1.0000		
2.203				2.472	3.039		.9630		
2.082				2.344	2.86		.9150		į
1.946	.1914	.5450	.683	2.199	2.69'	.2035	.8690	.631	

Two-Blade (\mathbf{E}^n) Propeller $\beta = 35^\circ$ Two-Blade (E') Propeller Small Spinner Small Spinner β = 45° Plain Blade Roots Plain Blade Roots Test No. 67 Test No. 69 c_T cs V/nD | C_T $^{\rm c}$ s V/nD | $c_{\mathbf{p}}$ | CP η η 1.638 0.0225 0.0568 0.649 2.904 2.340 0.0237 0.0964 0.576 3.734 1.579 .0700 .758 .816 2.690 2.461 2.250 .0538 2.240 .0415 .1272 3.384 .731 -0466 2.169 .0532 .1443 .805 3.200 1.427 .0608 .1031 .841 2.057 .0692 .836 .1703 2.931 1.354 1.298 1.227 .1904 .0732 .1158 .856 2.084 -0822 .844 2.721 .0816 .1239 .856 1.973 1.855 .0958 2088 .851 .0928 .1350 843 1.762 .1084 .2248 .850 2.376

1.833 1.715 1.588 .1428 1.160 .1023 .832 .2370 .836 .832 .1183 2.233 1.089 .1145 .1521 .819 1.600 .1276 .2455 2.117 .1576 1.022 .1233 .800 .776 1.480 .2555 1.503 .1362 .801 .1628 1.379 .1399 .2650 .728 1.799 .886 .1370 700 1.258 .1405 .1419 .1734 2678 .681 1.691 .1769 1.207 2679 .639 .817 .1394 .644 1.154 .754 .1785 .597 1.121 .1454 .2708 .602 1.457 .1413 1.064 .2766 960 1.018 .1494 .684 .550 1.316 .1452 .1815 .547 .2826 .620 .1500 .1858 .500 .867 .503 1.196 .844 .1569 .2871 461 .562 .1520 .1893 .451 .783 .756 .672 2908 .968 .1607 .496 .1568 .1951 .399 .688 .1639 .2965 .372 .858 .410 1.618 .1606 .2005 .328 .565 .557 2.286 .1689 -3042 .309 .707 3.525 .0264 .0616 2.824 .693 .0347 .1149 .690 1.532 .0421 .0802 .804 2.536 2.217 .0459 .1336 .761 3.319 1.465 .0535 .0937 .837 2.353 2.097 .0626 .1622 3.037 809 1.401 .0660 .1074 .861 .852 2.179 2.033 .0754 846 .0762 1.898 0902 2005 .854 2.617 1.260 .0876 .1295 .852 1.899 2.449 2.305 2.177 .1394 1.805 .1026 .2178 .850 .0991 1.192 .847 1.770 .1131 1,720 .2301 .846 826 1.645 1.536 1,121 1.637 .1238 .837 .2421 .813 1.058 .1186 .1544 1.527 .1352 .2521 .819 2.012 .1298 .984 .1608 1.445 .1378 .2631 .757 1.893 .1368 .915 .766 1.315

TABLE NO. 41

TABLE NO. 42

2672

1409

Two-Blade (\mathbf{E}^n) Propeller $\beta = 55^{\circ}$

Small Spinner Plain Blade Roots Two-Blade ($\mathbf{E}^{\mathbf{H}}$) Propeller $\beta = 65^{\circ}$

1.346

Small Spinner Plain Blade Roots

.709 1.754

Test No. 71				Ţ	est No.	72			
/nD	C _T	C _P	ח	c _s	V/nD	C _T	C _P	ŋ	cs
.982	0.0802	0.2952	0.810	3.808	4,105	0.1292	0.6925	0.768	4.42
372	.0929	.3220	.829	3,604	3.940	.1385	.7085	.770	4.22
748	.1071	.3430	.858	3.408	3.780	.1486	.7210	.780	4.04
620	.1161	.3645	.834	3.210	3.611	1580	.7315	.781	3.84
.495	.1297	.3833	.844	3.019	3.430	.1694	.7390	.786	3.65
.370	.1407	.3988	.836	2.846	3,255	.1761	.7370	.777	3.46
.270	.1485	.4100	.822	2.715	3.090	.1748	.7329	.737	3.29
.144	.1497	.4185	.767	2.551	2.970	.1692	.7155	.702	3.17
.005	.1471	.4100	.719	2.398	2.803	.1605	.6720	.670	3.03
.883	.1460	.4039	.679	2.260	2,601 2,468	.1516 .1470	.6330 .6105	.623	2.84
.777	.1470	.3981	.656	2.136	2,280	.1413	.5850	.594 .551	2.72
652	.1464	.3970	.609	1.986	2.159	.1383	5715	.522	2.41
537	1471	.3972	.569	1.847	1.975	1349	.5580	.477	2.22
422	.1480	3992	.527	1.708	1.810	,1316	5430	439	2.04
311	.1494	4000	489	1.575	1.635	1271	.5340	.389	1.85
202	.1512	4031	451	1.442	1.500		.5290	.356	1.70
083	.1543	4060	412	1.300	1.355	.1247	.5235	.322	1.54
962		4096	.366	1.151	1,199		.5200	.289	1.36
848	.1563	.4120	.322	1.013	.980	.1238	.5185	.234	1.11
	.1567	.4120		.858	4,151	.1252	.6870	.756	4.47
718			.273		4.040	.1323	.6965	.768	4.34
010	.0787	.2919	.812	3.853	3.860	.1440	.7120	.781	4.13
920		.3069	.822	3.706	3.700	.1530	.7230	.782	3.95
796		.3344	.833	3.487	3.539	.1645	.7391	•788	3.76
.661		.3571	.848	3.273	3,362		.7438	.787	3.56
. 553		.3760	.834	3.107	3.190		.7371	.774	3.39
.425		.3920	.834	2.925	3.032		.7289	.726	3.23
.314		.4052	.825	2.777	2.865		.6910	682	3.08
.195		.4158	.792	2.614	2.693	.1555	.6480	.647	2.93
.071		.4143	.743	2.469					
946		. 4080	.703	2.331					
846	.1468	.4035	.672	2.215					

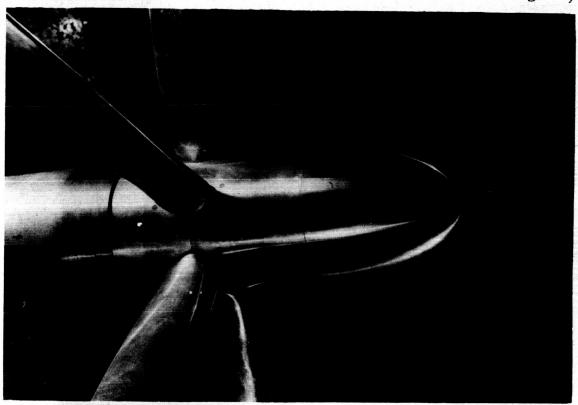


Figure 1.-Six-blade propeller with small spinner. (Filleted blade roots)

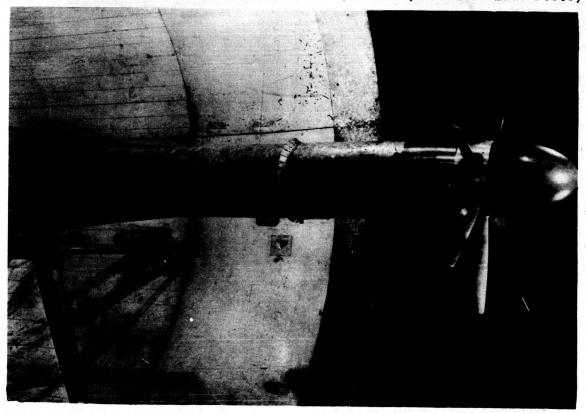


Figure 2.- Six-blade propeller with large spinner. (Apertures closed)

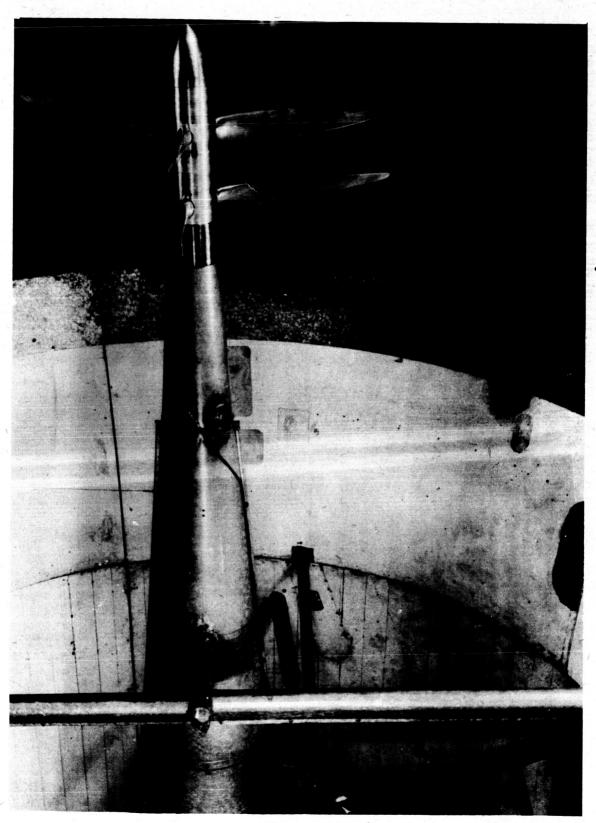


Figure 3.- Six-blade dual-rotation propeller with small spinner.

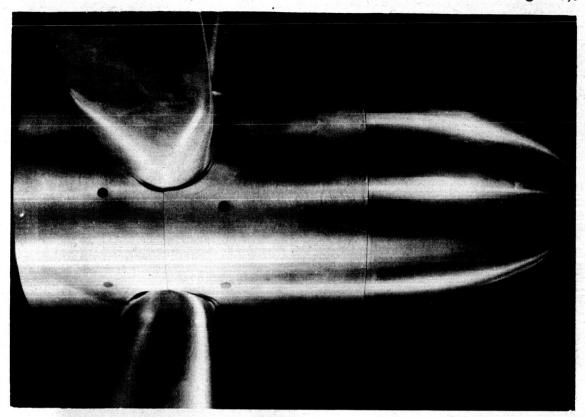
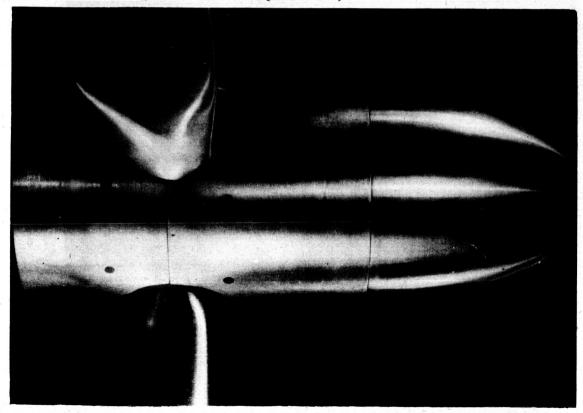
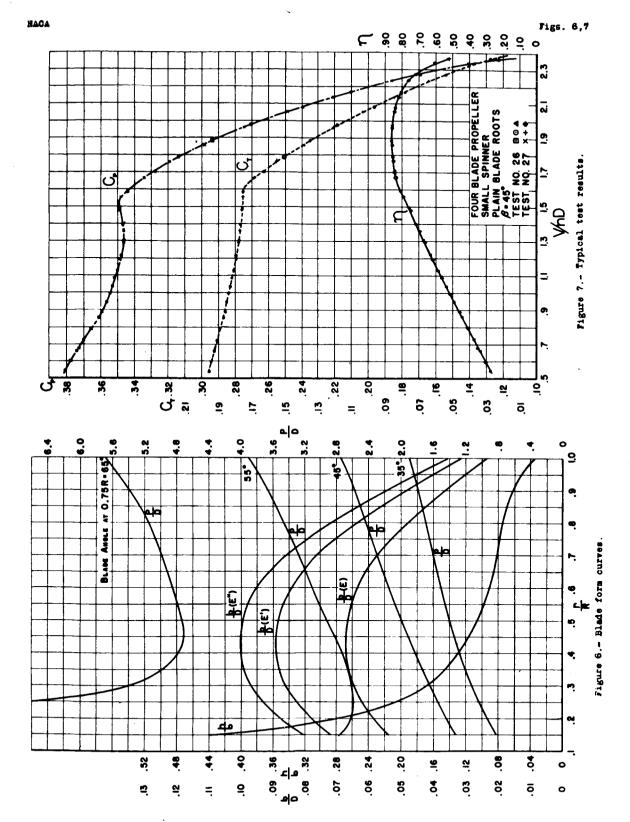
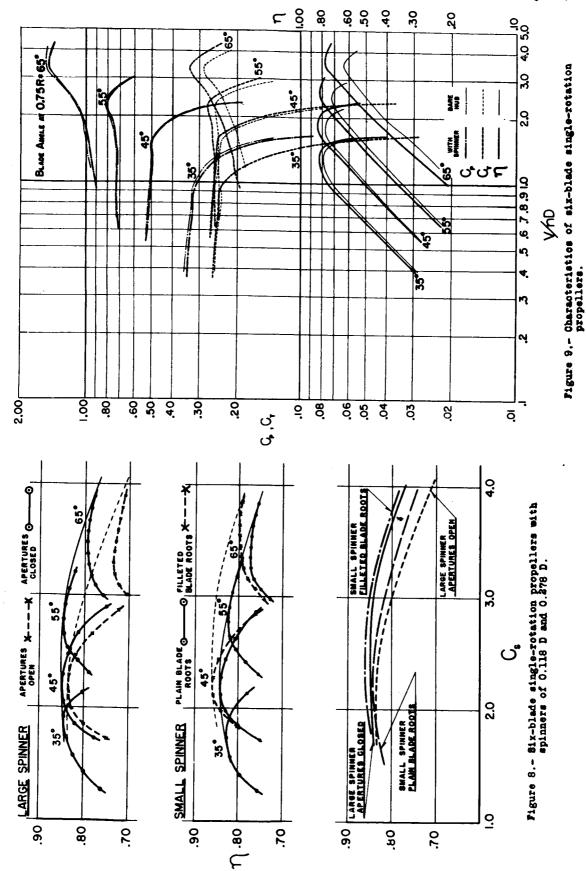
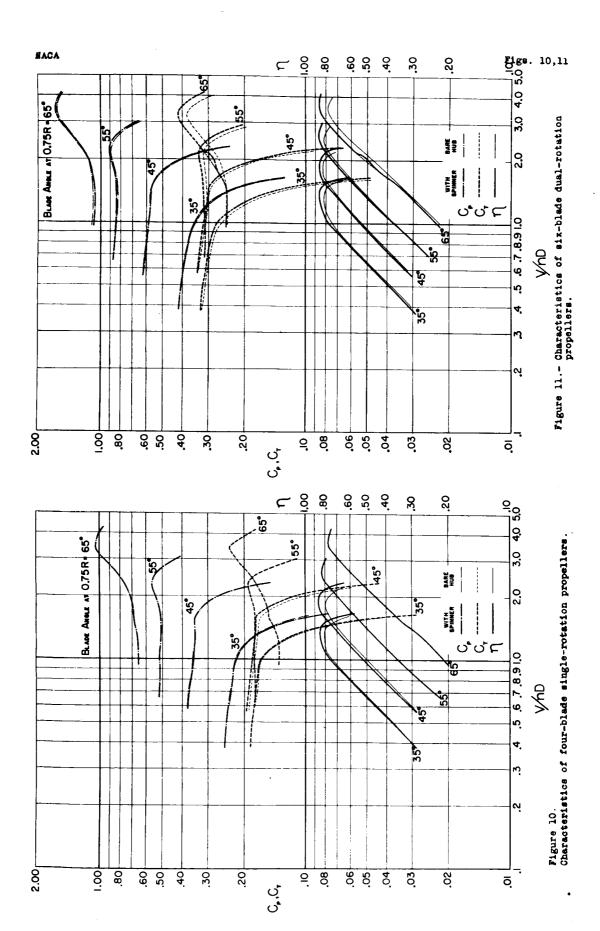
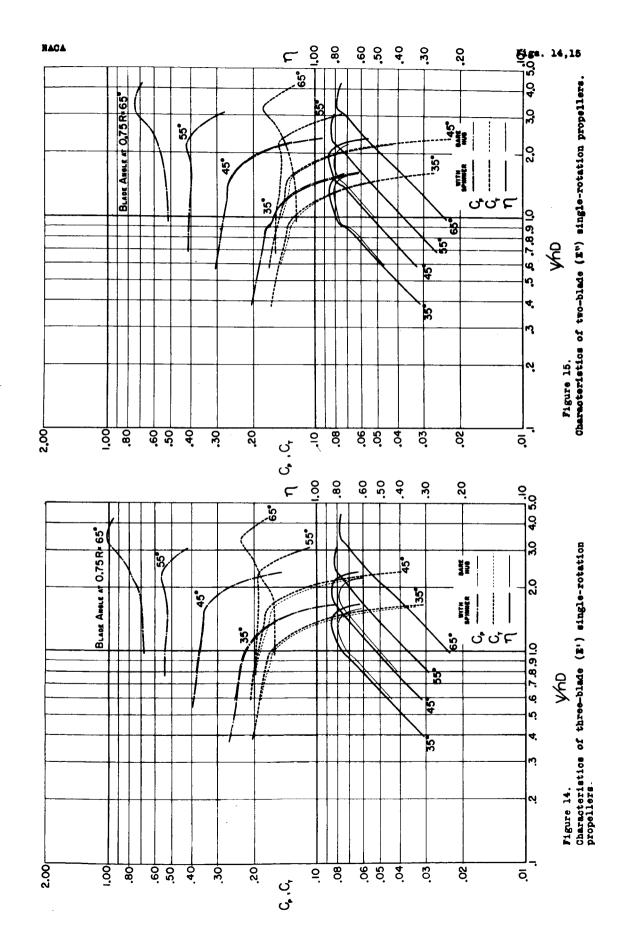


Figure 4.- Small spinner - plain blade roots.

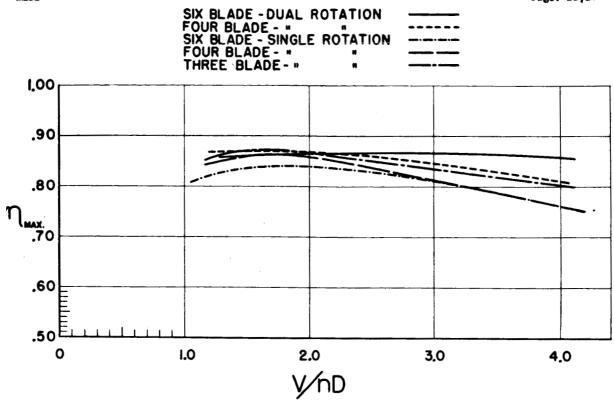
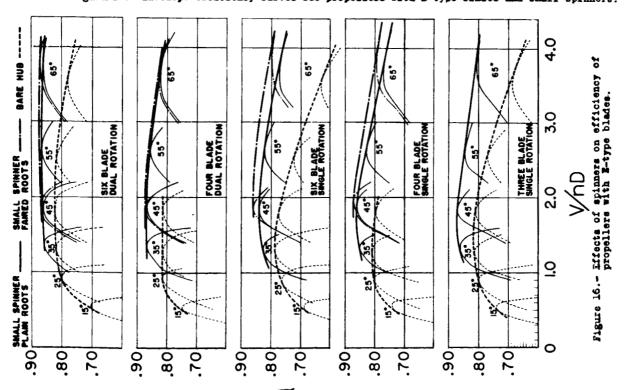
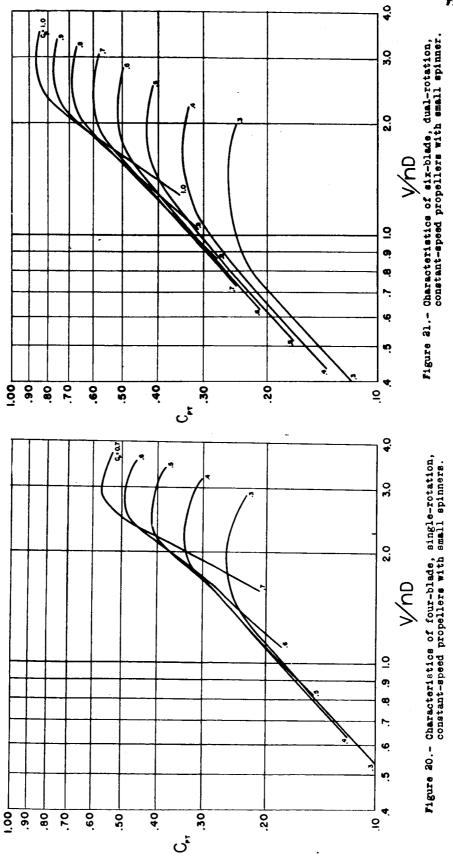




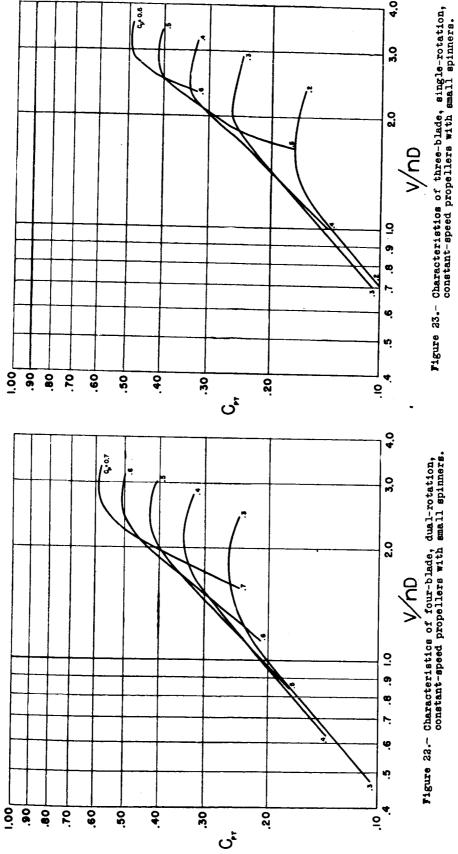

Figure 5.- Small spinner - filleted blade roots.

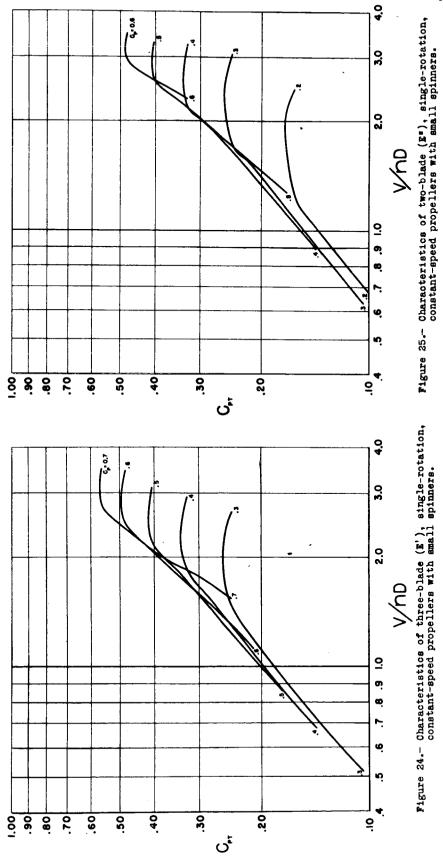
₩-84

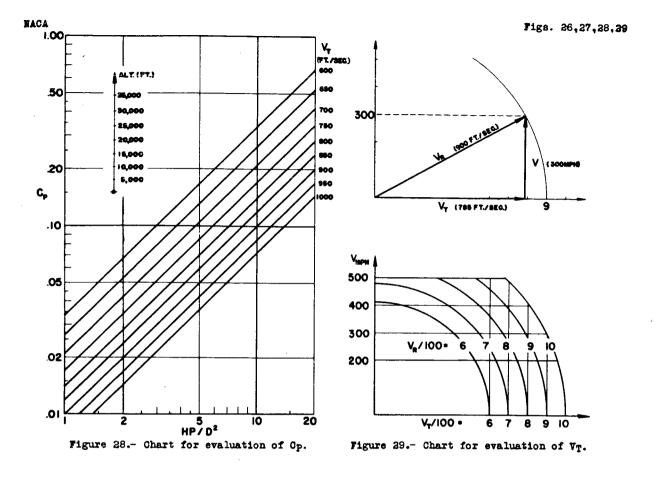


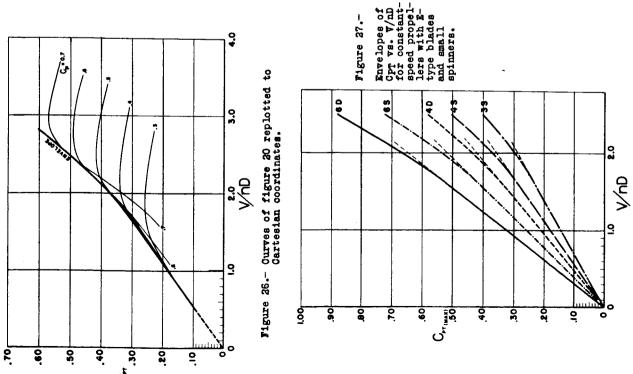
¥-8-₩

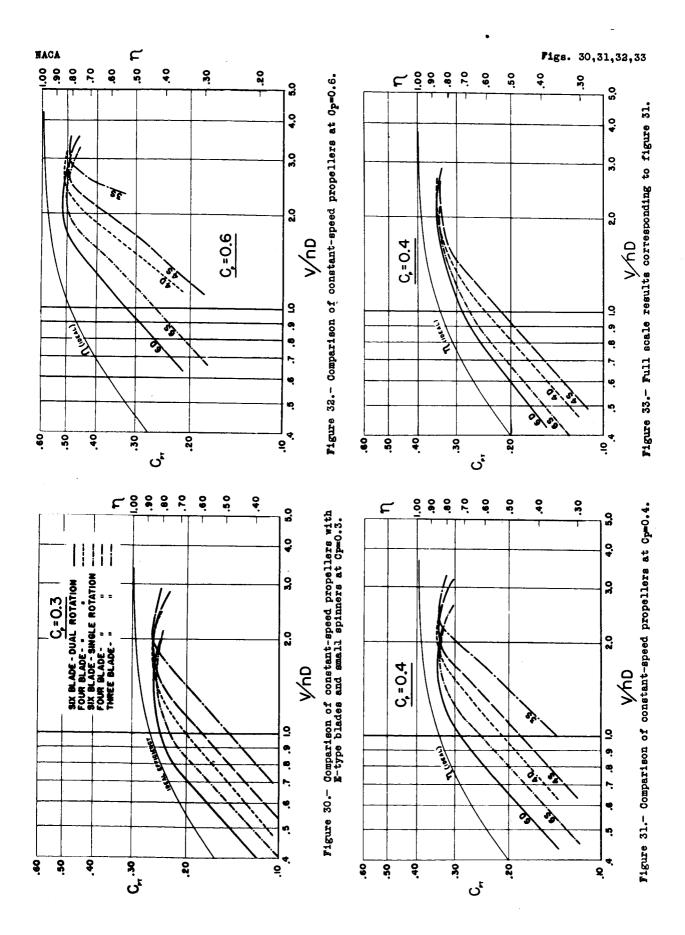




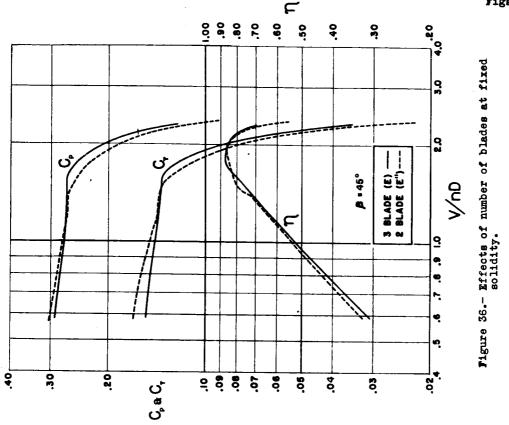

Figure 17 .- Envelope efficiency curves for propellers with E-type blades and small spinners.

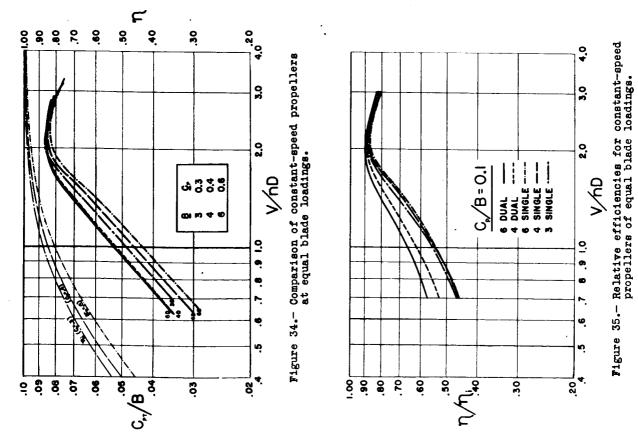


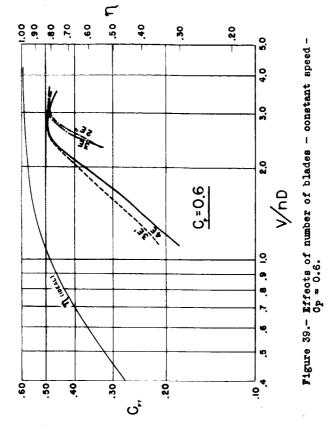

W-84

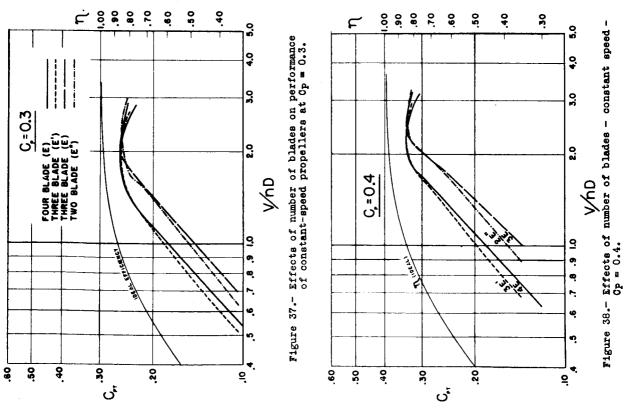



101









1017

